更改

跳到导航 跳到搜索
删除3,035字节 、 2021年11月26日 (五) 14:15
第44行: 第44行:     
: <math> Z = \sum_{i} \mathrm{e}^{-\beta E_i}, </math>
 
: <math> Z = \sum_{i} \mathrm{e}^{-\beta E_i}, </math>
  −
<math> Z = \sum_{i} \mathrm{e}^{-\beta E_i}, </math><br />
      
where
 
where
第53行: 第51行:       −
: <math> i </math> is the index for the [[Microstate (statistical mechanics)|microstates]] of the system;
+
<math> i </math> 是系统微观状态的指标;
   −
<math> i </math> 是系统微观状态的指标;
+
<math> \mathrm{e} </math> 是欧拉的数字;
   −
: <math> \mathrm{e} </math> is [[e (mathematical constant)|Euler's number]];
+
<math> \beta </math> 是热力学beta,定义为 <math> \tfrac{1}{k_\text{B} T} </math>;
   −
<math> \mathrm{e} </math> 是欧拉的数字;
+
<math> E_i </math> 是系统在各自微观状态下的总能量。
   −
: <math> \beta </math> is the [[thermodynamic beta]], defined as <math> \tfrac{1}{k_\text{B} T} </math>;
     −
<math> \beta </math> 是热力学beta,定义为 <math> \tfrac{1}{k_\text{B} T} </math>;
     −
: <math> E_i </math> is the total energy of the system in the respective [[Microstate (statistical mechanics)|microstate]].
     −
<math> E_i </math> 是系统在各自微观状态下的总能量。
         +
指数因子 <math> \mathrm{e}^{-\beta E_i} </math> 也被称为玻尔兹曼因子。
   −
  −
The [[Exponential function|exponential]] factor <math> \mathrm{e}^{-\beta E_i} </math> is otherwise known as the [[Boltzmann factor]].
  −
  −
指数因子 <math> \mathrm{e}^{-\beta E_i} </math> 也被称为玻尔兹曼因子。
        第626行: 第617行:     
: <math> Z = \frac{1}{h^3} \int \mathrm{e}^{-\beta H(q, p)} \, \mathrm{d}^3 q \, \mathrm{d}^3 p, </math>
 
: <math> Z = \frac{1}{h^3} \int \mathrm{e}^{-\beta H(q, p)} \, \mathrm{d}^3 q \, \mathrm{d}^3 p, </math>
  −
<math> Z = \frac{1}{h^3} \int \mathrm{e}^{-\beta H(q, p)} \, \mathrm{d}^3 q \, \mathrm{d}^3 p, </math><br />
      
where
 
where
   −
: <math> h </math> is the [[Planck constant]];
+
<math> h </math> 是普朗克常数;
   −
<math> h </math> 是普朗克常数;
+
<math> \beta </math> 是热力学beta,定义为 <math> \tfrac{1}{k_\text{B} T} </math>;
   −
: <math> \beta </math> is the [[thermodynamic beta]], defined as <math> \tfrac{1}{k_\text{B} T} </math>;
+
<math> H(q, p) </math> 是系统的哈密顿函数;
   −
<math> \beta </math> 是热力学beta,定义为 <math> \tfrac{1}{k_\text{B} T} </math>;
+
<math> q </math> 是正则位置
   −
: <math> H(q, p) </math> is the [[Hamiltonian mechanics|Hamiltonian]] of the system;
+
<math> p </math> 是正则动量。
   −
<math> H(q, p) </math> 是系统的哈密顿函数;
  −
  −
: <math> q </math> is the [[Canonical coordinates|canonical position]];
  −
  −
<math> q </math> 是正则位置
  −
  −
: <math> p </math> is the [[Canonical coordinates|canonical momentum]].
  −
  −
<math> p </math> 是正则动量。
        第673行: 第653行:       −
: <math> Z=\frac{1}{N!h^{3N}} \int \, \exp \left(-\beta \sum_{i=1}^N H(\textbf q_i, \textbf p_i) \right) \; \mathrm{d}^3 q_1 \cdots \mathrm{d}^3 q_N \, \mathrm{d}^3 p_1 \cdots \mathrm{d}^3 p_N </math>
+
<math> Z=\frac{1}{N!h^{3N}} \int \, \exp \left(-\beta \sum_{i=1}^N H(\textbf q_i, \textbf p_i) \right) \; \mathrm{d}^3 q_1 \cdots \mathrm{d}^3 q_N \, \mathrm{d}^3 p_1 \cdots \mathrm{d}^3 p_N </math>
 
  −
<math> Z=\frac{1}{N!h^{3N}} \int \, \exp \left(-\beta \sum_{i=1}^N H(\textbf q_i, \textbf p_i) \right) \; \mathrm{d}^3 q_1 \cdots \mathrm{d}^3 q_N \, \mathrm{d}^3 p_1 \cdots \mathrm{d}^3 p_N </math>
      
where
 
where
    +
<math> h </math> 是普朗克常数;
    +
<math> \beta </math> 是热力学beta,定义为  <math> \tfrac{1}{k_\text{B} T} </math>;
    +
<math> i </math> 是系统粒子的指数
   −
: <math> h </math> is the [[Planck constant]];
+
<math> H </math> 是一个粒子的哈密顿量;
   −
<math> h </math> 是普朗克常数;
+
<math> q_i </math> 是各个粒子的正则位置;
   −
: <math> \beta </math> is the [[thermodynamic beta]], defined as <math> \tfrac{1}{k_\text{B} T} </math>;
+
<math> p_i </math> 是各个粒子的正则动量;
   −
<math> \beta </math> 是热力学beta,定义为  <math> \tfrac{1}{k_\text{B} T} </math>;
+
<math> \mathrm{d}^3 </math> 是一个简写符号,用来表示 <math> q_i </math> 和 <math> p_i </math> 是三维空间中的向量。<br />
 
  −
: <math> i </math> is the index for the particles of the system;
  −
 
  −
<math> i </math> 是系统粒子的指数
  −
 
  −
: <math> H </math> is the [[Hamiltonian mechanics|Hamiltonian]] of a respective particle;
  −
 
  −
<math> H </math> 是一个粒子的哈密顿量;
  −
 
  −
: <math> q_i </math> is the [[Canonical coordinates|canonical position]] of the respective particle;
  −
 
  −
<math> q_i </math> 是各个粒子的正则位置;
  −
 
  −
: <math> p_i </math> is the [[Canonical coordinates|canonical momentum]] of the respective particle;
  −
 
  −
<math> p_i </math> 是各个粒子的正则动量;
  −
 
  −
: <math> \mathrm{d}^3 </math> is shorthand notation to indicate that <math> q_i </math> and <math> p_i </math> are vectors in three-dimensional space.
  −
 
  −
<math> \mathrm{d}^3 </math> 是一个简写符号,用来表示 <math> q_i </math> 和 <math> p_i </math> 是三维空间中的向量。<br />
      
The reason for the [[factorial]] factor ''N''! is discussed [[#Partition functions of subsystems|below]]. The extra constant factor introduced in the denominator was introduced because, unlike the discrete form, the continuous form shown above is not [[dimensionless]]. As stated in the previous section, to make it into a dimensionless quantity, we must divide it by ''h''<sup>3''N''</sup> (where ''h'' is usually taken to be Planck's constant).
 
The reason for the [[factorial]] factor ''N''! is discussed [[#Partition functions of subsystems|below]]. The extra constant factor introduced in the denominator was introduced because, unlike the discrete form, the continuous form shown above is not [[dimensionless]]. As stated in the previous section, to make it into a dimensionless quantity, we must divide it by ''h''<sup>3''N''</sup> (where ''h'' is usually taken to be Planck's constant).
第729行: 第690行:       −
: <math> Z = \operatorname{tr} ( \mathrm{e}^{-\beta \hat{H}} ), </math>
+
<math> Z = \operatorname{tr} ( \mathrm{e}^{-\beta \hat{H}} ), </math>
 
  −
<math> Z = \operatorname{tr} ( \mathrm{e}^{-\beta \hat{H}} ), </math>
      
where:
 
where:
第737行: 第696行:        +
<math> \operatorname{tr} ( \circ ) </math> 是矩阵的轨迹;
   −
: <math> \operatorname{tr} ( \circ ) </math> is the [[trace (linear algebra)|trace]] of a matrix;
+
<math> \beta </math> 是热力学beta,定义为  <math> \tfrac{1}{k_\text{B} T} </math>;
   −
<math> \operatorname{tr} ( \circ ) </math> 是矩阵的轨迹;
+
<math> \hat{H} </math> 是哈密尔顿算符。
 
  −
: <math> \beta </math> is the [[thermodynamic beta]], defined as <math> \tfrac{1}{k_\text{B} T} </math>;
  −
 
  −
<math> \beta </math> 是热力学beta,定义为  <math> \tfrac{1}{k_\text{B} T} </math>;
  −
 
  −
: <math> \hat{H} </math> is the [[Hamiltonian (quantum mechanics)|Hamiltonian operator]].
  −
 
  −
<math> \hat{H} </math> 是哈密尔顿算符。
      
The [[dimension]] of <math> \mathrm{e}^{-\beta \hat{H}} </math> is the number of [[energy eigenstates]] of the system.
 
The [[dimension]] of <math> \mathrm{e}^{-\beta \hat{H}} </math> is the number of [[energy eigenstates]] of the system.
第769行: 第721行:       −
: <math> Z = \frac{1}{h} \int \langle q, p | \mathrm{e}^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math>
+
<math> Z = \frac{1}{h} \int \langle q, p | \mathrm{e}^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math>
 
  −
<math> Z = \frac{1}{h} \int \langle q, p | \mathrm{e}^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math>
      
where:
 
where:
第777行: 第727行:        +
<math> h </math> 是普朗克常数;
   −
: <math> h </math> is the [[Planck constant]];
+
<math> \beta </math> 是热力学beta,定义为 <math> \tfrac{1}{k_\text{B} T} </math>;
 
  −
<math> h </math> 是普朗克常数;
  −
 
  −
: <math> \beta </math> is the [[thermodynamic beta]], defined as <math> \tfrac{1}{k_\text{B} T} </math>;
     −
<math> \beta </math> 是热力学beta,定义为 <math> \tfrac{1}{k_\text{B} T} </math>;
+
<math> \hat{H} </math> 是哈密尔顿算符;
   −
: <math> \hat{H} </math> is the [[Hamiltonian (quantum mechanics)|Hamiltonian operator]];
+
<math> q </math>是正则位置;
   −
<math> \hat{H} </math> 是哈密尔顿算符;
+
<math> p </math> 是正则动量。
   −
: <math> q </math> is the [[Canonical coordinates|canonical position]];
  −
  −
<math> q </math>是正则位置;
  −
  −
: <math> p </math> is the [[Canonical coordinates|canonical momentum]].
  −
  −
<math> p </math> 是正则动量。
        第805行: 第745行:  
在具有多个量子态''s''共享相同能量的系统中,系统的能级''E<sub>s</sub>''是简并的。在简并能级的情况下,我们可以用能级( ''j'' )的贡献来表示配分函数,如下:
 
在具有多个量子态''s''共享相同能量的系统中,系统的能级''E<sub>s</sub>''是简并的。在简并能级的情况下,我们可以用能级( ''j'' )的贡献来表示配分函数,如下:
    +
<math> Z = \sum_j g_j \cdot \mathrm{e}^{-\beta E_j},</math>
   −
  −
  −
: <math> Z = \sum_j g_j \cdot \mathrm{e}^{-\beta E_j},</math>
  −
  −
<math> Z = \sum_j g_j \cdot \mathrm{e}^{-\beta E_j},</math>
        第828行: 第764行:       −
 
+
<math>Z = \operatorname{tr} ( \mathrm{e}^{-\beta \hat{H}} ),</math>
: <math>Z = \operatorname{tr} ( \mathrm{e}^{-\beta \hat{H}} ),</math>
  −
 
  −
<math>Z = \operatorname{tr} ( \mathrm{e}^{-\beta \hat{H}} ),</math>
      
where ''Ĥ'' is the [[Hamiltonian (quantum mechanics)|quantum Hamiltonian operator]]. The exponential of an operator can be defined using the [[Characterizations of the exponential function|exponential power series]].
 
where ''Ĥ'' is the [[Hamiltonian (quantum mechanics)|quantum Hamiltonian operator]]. The exponential of an operator can be defined using the [[Characterizations of the exponential function|exponential power series]].
567

个编辑

导航菜单