更改

跳到导航 跳到搜索
删除4,883字节 、 2021年12月6日 (一) 16:54
无编辑摘要
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共744,未经人工整理和审校,带来阅读不便,请见谅。
+
此词条暂由彩云小译翻译,柯里昂审校,翻译字数共744
    
{{Refimprove|date=November 2008}}
 
{{Refimprove|date=November 2008}}
第6行: 第6行:     
An '''adaptive system''' is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological [[homeostasis]] or evolutionary [[adaptation]] in [[biology]]. [[Feedback loops]] represent a key feature of adaptive systems, such as [[ecosystems]] and individual [[organisms]]; or in the human world, [[communities]], [[organizations]], and [[families]].
 
An '''adaptive system''' is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological [[homeostasis]] or evolutionary [[adaptation]] in [[biology]]. [[Feedback loops]] represent a key feature of adaptive systems, such as [[ecosystems]] and individual [[organisms]]; or in the human world, [[communities]], [[organizations]], and [[families]].
  −
An adaptive system is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological homeostasis or evolutionary adaptation in biology. Feedback loops represent a key feature of adaptive systems, such as ecosystems and individual organisms; or in the human world, communities, organizations, and families.
      
适应系统是一组相互作用或相互依存的实体,真实的或抽象的,形成一个完整的整体,共同能够响应相互作用部分的环境变化或变化,类似于生物学中持续的生理稳态或进化适应。反馈循环代表了适应系统的一个关键特征,例如生态系统和个体有机体; 或者在人类世界、社区、组织和家庭中。
 
适应系统是一组相互作用或相互依存的实体,真实的或抽象的,形成一个完整的整体,共同能够响应相互作用部分的环境变化或变化,类似于生物学中持续的生理稳态或进化适应。反馈循环代表了适应系统的一个关键特征,例如生态系统和个体有机体; 或者在人类世界、社区、组织和家庭中。
第14行: 第12行:     
Artificial adaptive systems include [[robots]] with [[control system]]s that utilize [[negative feedback]] to maintain desired states.
 
Artificial adaptive systems include [[robots]] with [[control system]]s that utilize [[negative feedback]] to maintain desired states.
  −
Artificial adaptive systems include robots with control systems that utilize negative feedback to maintain desired states.
      
人工自适应系统包括具有控制系统的机器人,这些机器人利用负反馈来维持期望的状态。
 
人工自适应系统包括具有控制系统的机器人,这些机器人利用负反馈来维持期望的状态。
  −
      
==The law of adaptation==
 
==The law of adaptation==
第27行: 第21行:  
The law of adaptation can be stated informally as:  
 
The law of adaptation can be stated informally as:  
   −
The law of adaptation can be stated informally as:  
+
适应法则可以非正式地阐述如下:
 
  −
适应法可以非正式地阐述如下:
  −
 
  −
{{quote|Every adaptive system converges to a state in which all kind of stimulation ceases.<ref>José Antonio Martín H., Javier de Lope and Darío Maravall: "Adaptation, Anticipation and Rationality in Natural and Artificial Systems: Computational Paradigms Mimicking Nature" Natural Computing, December, 2009. Vol. 8(4), pp. 757-775. [https://dx.doi.org/10.1007/s11047-008-9096-6 doi]</ref>}}
      +
Every adaptive system converges to a state in which all kind of stimulation ceases
    +
每个自适应系统都收敛到一种状态,在这种状态下,所有的刺激都停止了
    
Formally, the law can be defined as follows:
 
Formally, the law can be defined as follows:
   −
Formally, the law can be defined as follows:
+
在形式上,该法则可以定义如下:
   −
在形式上,该法可以定义如下:
        第45行: 第36行:  
Given a system <math>S</math>, we say that a physical event <math>E</math> is a stimulus for the system <math>S</math> if and only if the probability <math>P(S \rightarrow S'|E)</math> that the system suffers a change or be perturbed (in its elements or in its processes) when the event <math>E</math> occurs is strictly greater than the prior probability that <math>S</math> suffers a change independently of <math>E</math>:
 
Given a system <math>S</math>, we say that a physical event <math>E</math> is a stimulus for the system <math>S</math> if and only if the probability <math>P(S \rightarrow S'|E)</math> that the system suffers a change or be perturbed (in its elements or in its processes) when the event <math>E</math> occurs is strictly greater than the prior probability that <math>S</math> suffers a change independently of <math>E</math>:
   −
Given a system <math>S</math>, we say that a physical event <math>E</math> is a stimulus for the system <math>S</math> if and only if the probability <math>P(S \rightarrow S'|E)</math> that the system suffers a change or be perturbed (in its elements or in its processes) when the event <math>E</math> occurs is strictly greater than the prior probability that <math>S</math> suffers a change independently of <math>E</math>:
+
给定一个系统 <math>S</math>, 我们说一个物理事件  <math>E</math> 是对系统的刺激  当且仅当概率  <math>P(S \rightarrow S'|E)</math> 当事件发生时,系统会发生变化或受到干扰(在其元素或过程中)   <math>E</math>发生严格大于先验概率 <math>S</math>  遭受独立于的变化 <math>E</math>
   −
给定一个系统,我们说物理事件 e </math > 是系统的一个刺激,当且仅当事件 e </math > 发生时,系统遭受变化或者被扰乱的概率 p (s 右侧行 s’ | e)严格大于先验概率 s </math > 遭受独立于数学的变化时:
            
:<math>P(S \rightarrow S'|E)>P(S \rightarrow S') </math>
 
:<math>P(S \rightarrow S'|E)>P(S \rightarrow S') </math>
  −
<math>P(S \rightarrow S'|E)>P(S \rightarrow S') </math>
  −
  −
P (s,s,s,s,s)
        第61行: 第47行:  
''Let <math>S</math> be an arbitrary system subject to changes in time <math>t</math> and let <math>E</math> be an arbitrary event that is a stimulus for the system <math>S</math>: we say that <math>S</math> is an adaptive system if and only if when t tends to infinity <math>(t\rightarrow \infty)</math> the probability that the system <math>S</math> change its behavior <math>(S\rightarrow S')</math> in a time step <math>t_0</math> given the event <math>E</math> is equal to the probability that the system change its behavior independently of the occurrence of the event <math>E</math>. In mathematical terms:''
 
''Let <math>S</math> be an arbitrary system subject to changes in time <math>t</math> and let <math>E</math> be an arbitrary event that is a stimulus for the system <math>S</math>: we say that <math>S</math> is an adaptive system if and only if when t tends to infinity <math>(t\rightarrow \infty)</math> the probability that the system <math>S</math> change its behavior <math>(S\rightarrow S')</math> in a time step <math>t_0</math> given the event <math>E</math> is equal to the probability that the system change its behavior independently of the occurrence of the event <math>E</math>. In mathematical terms:''
   −
Let <math>S</math> be an arbitrary system subject to changes in time <math>t</math> and let <math>E</math> be an arbitrary event that is a stimulus for the system <math>S</math>: we say that <math>S</math> is an adaptive system if and only if when t tends to infinity <math>(t\rightarrow \infty)</math> the probability that the system <math>S</math> change its behavior <math>(S\rightarrow S')</math> in a time step <math>t_0</math> given the event <math>E</math> is equal to the probability that the system change its behavior independently of the occurrence of the event <math>E</math>. In mathematical terms:
+
设 ''<math>S</math>'' 是一个随时间 ''<math>t</math>''变化的任意系统, ''<math>E</math>''是一个随时间变化的任意事件''<math>S</math>'',我们说 ''<math>S</math>'' 是一个对系统的刺激当且仅当t趋于无穷大时 ''<math>(t\rightarrow \infty)</math>'',系统 ''<math>S</math>''改变其行为''<math>(S\rightarrow S')</math>''的概率在一个时间步骤中''<math>t_0</math>''给定的事件''<math>E</math>''等于系统独立于事件''<math>E</math>''发生而改变其行为的概率。用数学术语来说:
   −
设 s 是一个随时间变化的任意系统,e 是一个随时间变化的任意事件,是一个对系统的刺激当且仅当 t 趋于无穷大时(t 右下方)系统改变其行为的概率在一个时间步骤中(s 右下方)给定的事件[ math ]等于系统独立于事件发生而改变其行为的概率。用数学术语来说:
            
#- <math> P_{t_0}(S\rightarrow S'|E) > P_{t_0}(S\rightarrow S') > 0 </math>
 
#- <math> P_{t_0}(S\rightarrow S'|E) > P_{t_0}(S\rightarrow S') > 0 </math>
  −
- <math> P_{t_0}(S\rightarrow S'|E) > P_{t_0}(S\rightarrow S') > 0 </math>
  −
  −
- < 数学 > p _ { t _ 0}(s 右侧 s’ | e) > p _ { t _ 0}(s 右侧 s’) > 0 </math >
  −
   
#- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
 
#- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
  −
- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
  −
  −
- < math > lim _ { t right tarrow infty } p _ t (s right tarrow s’ | e) = p _ t (s right tarrow s’) </math >
  −
  −
      
Thus, for each instant <math>t</math> will exist a temporal interval <math>h</math> such that:
 
Thus, for each instant <math>t</math> will exist a temporal interval <math>h</math> such that:
   −
Thus, for each instant <math>t</math> will exist a temporal interval <math>h</math> such that:
+
因此,对于每一个瞬间<math>t</math> 将存在一个时间间隔<math>h</math>使得:
   −
因此,对于每一个瞬间 < math > t </math > 将存在一个时间间隔 < math > h </math > 这样的:
            
:<math> P_{t+h}(S\rightarrow S' | E) - P_{t+h}(S\rightarrow S') < P_t(S\rightarrow S' | E) - P_t(S\rightarrow S')</math>
 
:<math> P_{t+h}(S\rightarrow S' | E) - P_{t+h}(S\rightarrow S') < P_t(S\rightarrow S' | E) - P_t(S\rightarrow S')</math>
  −
<math> P_{t+h}(S\rightarrow S' | E) - P_{t+h}(S\rightarrow S') < P_t(S\rightarrow S' | E) - P_t(S\rightarrow S')</math>
  −
  −
P _ { t + h }(s 右侧 s’ | e)-p _ { t + h }(s 右侧 s’ | e) < p _ t (s 右侧 s’ | e)-p _ t (s 右侧 s’) </math >
        第99行: 第68行:  
==Benefit of self-adjusting systems==
 
==Benefit of self-adjusting systems==
   −
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of ''self-adjusting systems'' is its “[[edge of chaos|adaptation to the edge of chaos]]” or ability to avoid [[chaos theory|chaos]].  Practically speaking, by heading to the [[edge of chaos]] without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications.<ref>Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref> Physicists have shown that [[adaptation]] to the [[edge of chaos]] occurs in almost all systems with [[feedback]].<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>
+
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of ''self-adjusting systems'' is its “[[edge of chaos|adaptation to the edge of chaos]]” or ability to avoid [[chaos theory|chaos]].  Practically speaking, by heading to the [[edge of chaos]] without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications.<ref name=":0">Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref> Physicists have shown that [[adaptation]] to the [[edge of chaos]] occurs in almost all systems with [[feedback]].<ref name=":1">{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>
   −
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos.  Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.
+
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力学的历史”。自调节系统最重要的特性之一是它能“适应混沌的边缘”或避免混沌的能力。实际上,如果一个领导者走向混乱的边缘而不走得更远,那么他就可以在没有灾难的情况下自发地行动。2009年3/4月的一篇文章进一步解释了自我调节系统的使用和现实意义<ref name=":0" /> 。物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中<ref name=":1" />。
   −
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力学的历史”。自调节系统最重要的特性之一是它能“适应混沌的边缘”或避免混沌的能力。实际上,如果一个领导者走向混乱的边缘而不走得更远,那么他就可以在没有灾难的情况下自发地行动。2009年3/4月的一篇文章进一步解释了自我调节系统的使用和现实意义。物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。
        第111行: 第79行:  
How do various types of adaptations interact in a living system? ''Practopoiesis,'' a term due to its originator [[Danko Nikolić]], is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which [[autopoiesis]] of the entire ''organism'' or a ''cell'' occurs through a hierarchy of [[allopoiesis|allopoietic]] interactions among ''components''.<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref> This is possible because the components are organized into a [[poiesis|poietic]] hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
 
How do various types of adaptations interact in a living system? ''Practopoiesis,'' a term due to its originator [[Danko Nikolić]], is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which [[autopoiesis]] of the entire ''organism'' or a ''cell'' occurs through a hierarchy of [[allopoiesis|allopoietic]] interactions among ''components''.<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref> This is possible because the components are organized into a [[poiesis|poietic]] hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
   −
How do various types of adaptations interact in a living system? Practopoiesis, a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which autopoiesis of the entire organism or a cell occurs through a hierarchy of allopoietic interactions among components. This is possible because the components are organized into a poietic hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
+
在一个生命系统中,各种类型的适应性是如何相互作用的?拓扑实践,这个术语源于它的发明者 Danko nikoli,是对回答这个问题的适应机制层次的一个参考。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分之间的异体生成相互作用而发生的<ref name="Nikolic2015" /> 。这是可能的,因为组件被组织成一个极端层次结构: 一个组件的自适应操作导致另一个组件的创建。这个理论提出,生命系统展示了一个由四个这样的适应性生命活动组成的等级体系:
   −
在一个生命系统中,各种类型的适应性是如何相互作用的?拓扑实践,这个术语源于它的发明者 Danko nikoli,是对回答这个问题的适应机制层次的一个参考。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分之间的异体生成相互作用而发生的。这是可能的,因为组件被组织成一个极端层次结构: 一个组件的自适应操作导致另一个组件的创建。这个理论提出,生命系统展示了一个由四个这样的适应性生命活动组成的等级体系:
        第119行: 第86行:  
     ''[[evolution]]'' (i) &rarr; ''[[gene expression]]'' (ii) &rarr; ''non gene-involving [[homeostatic]] mechanisms (anapoiesis)'' (iii) &rarr; ''final cell function'' (iv)
 
     ''[[evolution]]'' (i) &rarr; ''[[gene expression]]'' (ii) &rarr; ''non gene-involving [[homeostatic]] mechanisms (anapoiesis)'' (iii) &rarr; ''final cell function'' (iv)
   −
    evolution (i) &rarr; gene expression (ii) &rarr; non gene-involving homeostatic mechanisms (anapoiesis) (iii) &rarr; final cell function (iv)
+
  进化(i) &rarr; 基因表达(ii) &rarr; 非基因参与的稳态机制(anapoiesis)(iii) &rarr; 最终细胞功能(iv)
 
  −
进化(i)基因表达(ii)和 rarr; 非基因参与的稳态机制(anapoiesis)(iii)和 rarr; 最终细胞功能(iv)
            
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that [[thinking]] is synonymous with [[neural activity]] (i.e., with the 'final cell function' at level iv).  
 
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that [[thinking]] is synonymous with [[neural activity]] (i.e., with the 'final cell function' at level iv).  
  −
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that thinking is synonymous with neural activity (i.e., with the 'final cell function' at level iv).
      
随着等级制度向更高层次的组织发展,适应的速度也在加快。进化是最慢的,最后的细胞功能是最快的。最终,拓扑实践挑战了当前的神经科学学说,它断言心理活动主要发生在体内平衡,非生物水平(iii)——也就是说,头脑和思想从快速的体内平衡机制中产生,从而控制了细胞功能。这与人们普遍认为的思考是神经活动的同义词(即,与第四级的“最终细胞功能”)形成了鲜明对比。
 
随着等级制度向更高层次的组织发展,适应的速度也在加快。进化是最慢的,最后的细胞功能是最快的。最终,拓扑实践挑战了当前的神经科学学说,它断言心理活动主要发生在体内平衡,非生物水平(iii)——也就是说,头脑和思想从快速的体内平衡机制中产生,从而控制了细胞功能。这与人们普遍认为的思考是神经活动的同义词(即,与第四级的“最终细胞功能”)形成了鲜明对比。
      −
  −
Each slower level contains knowledge that is more general than the faster level; for example, genes contain more general knowledge than anapoietic mechanisms, which in turn contain more general knowledge than cell functions. This hierarchy of knowledge enables the anapoietic level to directly activate concepts, which are the most fundamental ingredient for the emergence of the mind.
      
Each slower level contains knowledge that is more general than the faster level; for example, genes contain more general knowledge than anapoietic mechanisms, which in turn contain more general knowledge than cell functions. This hierarchy of knowledge enables the anapoietic level to directly activate concepts, which are the most fundamental ingredient for the emergence of the mind.
 
Each slower level contains knowledge that is more general than the faster level; for example, genes contain more general knowledge than anapoietic mechanisms, which in turn contain more general knowledge than cell functions. This hierarchy of knowledge enables the anapoietic level to directly activate concepts, which are the most fundamental ingredient for the emergence of the mind.
38

个编辑

导航菜单