第222行: |
第222行: |
| :<math>\label{eq:14} | | :<math>\label{eq:14} |
| (2-\eta)\nu = \gamma . </math> | | (2-\eta)\nu = \gamma . </math> |
− | 其中<math>k</math>是'''[[玻尔兹曼常数]]''',<math>\rm{d} \tau</math>是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率<math>\chi</math>,<math>\rho</math>与临界密度<math>\rho_c</math>的差值,以及磁化强度<math>M\ </math>。在临界点处,<math>\chi</math>无穷大,且对应积分式也发散,因为衰减长度<math>\xi</math>也是无穷大的。而密度<math>\rho</math>为有限正常数<math>\rho_c</math>,<math>T</math>为<math>T_c\ </math>。{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation | + | 其中<math>k</math>是'''[[玻尔兹曼常数]]''',<math>\rm{d} \tau</math>是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率<math>\chi</math>,<math>\rho</math>与临界密度<math>\rho_c</math>的差值,以及磁化强度<math>M\ </math>。在临界点处,<math>\chi</math>无穷大,且对应积分式也发散,因为衰减长度<math>\xi</math>也是无穷大的。而密度<math>\rho</math>为有限正常数<math>\rho_c</math>,<math>T</math>为<math>T_c\ </math>。{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with ({{EquationNote|1=9}}), |
− | length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with ({{EquationNote|1=9}}), | |
− | | |
| :<math>\label{eq:15} | | :<math>\label{eq:15} |
| \mu + \nu = 2-\alpha= \gamma +2\beta, </math> | | \mu + \nu = 2-\alpha= \gamma +2\beta, </math> |
− | {{NumBlk|:|<math>\mu + \nu = 2-\alpha= \gamma +2\beta,</math>|{{EquationRef|15}}}} | + | 液-气平衡时的表面张力<math>\sigma</math>,或共存的、相反磁化畴之间的界面单位面积上的类似过剩自由能,在临界点(居里点)与<math>(-t)^\mu</math>(<math>\mu</math>对应此处临界点指数)成比例消失。界面区域的厚度与关联长度<math>\xi</math>的数量级相当<small>''(此句需要大家帮忙检查)''</small>,因此<math>\sigma/\xi</math>是与界面区域相关的单位体积自由能。在它的大小和它的奇异临界点行为中,每单位体积的自由能和在体相中是一样的,从体相中,依据关于温度的两个微分可以得出热容。因此,<math>\sigma/\xi</math>依<math>(-t)^{2-\alpha}\ </math>成比例消失;再联系({{EquationNote|1=9}})式可以得到另一个标度关系:{{NumBlk|:|<math>\mu + \nu = 2-\alpha= \gamma +2\beta,</math>|{{EquationRef|15}}}} |
− | | |
| | | |
| another scaling relation [16,17]. | | another scaling relation [16,17]. |