更改

跳到导航 跳到搜索
添加216字节 、 2021年12月13日 (一) 16:39
第368行: 第368行:  
with a scaling function <math>G\ .</math>  Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math>  The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math>
 
with a scaling function <math>G\ .</math>  Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math>  The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math>
   −
其中<math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math>以及<math>1/y=\nu\ </math>。由此齐次性表达式<math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math>和<math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}})——<math>d\nu=2-\alpha\ </math>。
+
其中<math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math>以及<math>1/y=\nu\ </math>。由此齐次性表达式<math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math>和<math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}})<math>d\nu=2-\alpha\ </math>。
    
The block-spin picture thus yields the critical-point scaling of the thermodynamic and correlation functions, and both the <math>d</math>-independent and <math>d</math>-dependent relations among the scaling exponents. The essence of this picture is confirmed in the renormalization-group theory [19,20].
 
The block-spin picture thus yields the critical-point scaling of the thermodynamic and correlation functions, and both the <math>d</math>-independent and <math>d</math>-dependent relations among the scaling exponents. The essence of this picture is confirmed in the renormalization-group theory [19,20].
 +
 +
因此,块自旋图产生了热力学函数和相关函数的临界点标度关系,以及标度指数之间的<math>d</math>无关和<math>d</math>依赖关系。重正化群理论证实了块自旋图的本质。
    
== References ==
 
== References ==
596

个编辑

导航菜单