with a scaling function <math>G\ .</math> Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math> The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math> | with a scaling function <math>G\ .</math> Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math> The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math> |