更改

跳到导航 跳到搜索
大小无更改 、 2022年1月19日 (三) 00:39
无编辑摘要
第13行: 第13行:  
Charles Darwin mentioned evolutionary interactions between flowering plants and insects in On the Origin of Species (1859). Although he did not use the word coevolution, he suggested how plants and insects could evolve through reciprocal evolutionary changes. Naturalists in the late 1800s studied other examples of how interactions among species could result in reciprocal evolutionary change. Beginning in the 1940s, plant pathologists developed breeding programs that were examples of human-induced coevolution. Development of new crop plant varieties that were resistant to some diseases favored rapid evolution in pathogen populations to overcome those plant defenses. That, in turn, required the development of yet new resistant crop plant varieties, producing an ongoing cycle of reciprocal evolution in crop plants and diseases that continues to this day.
 
Charles Darwin mentioned evolutionary interactions between flowering plants and insects in On the Origin of Species (1859). Although he did not use the word coevolution, he suggested how plants and insects could evolve through reciprocal evolutionary changes. Naturalists in the late 1800s studied other examples of how interactions among species could result in reciprocal evolutionary change. Beginning in the 1940s, plant pathologists developed breeding programs that were examples of human-induced coevolution. Development of new crop plant varieties that were resistant to some diseases favored rapid evolution in pathogen populations to overcome those plant defenses. That, in turn, required the development of yet new resistant crop plant varieties, producing an ongoing cycle of reciprocal evolution in crop plants and diseases that continues to this day.
   −
1859年,查尔斯·达尔文在他的著作''物种起源''中提到了被子植物和昆虫之间的进化互动。尽管他没有使用共同进化这个词,但他提出了植物和昆虫是如何通过相互的进化变化而进化的。19世纪晚期的博物学家研究了物种间的交互如何导致彼此演变的其他例子。从20世纪40年代开始的由植物病理学家开发的育种程序就是人类诱导共同进化的例子。培育能够抵抗某些疾病作物的新品种有利于病原体种群的快速进化以克服作物的这些抵御。这反过来又需要开发新的抗性作物品种,这样就造成了在作物和疾病之间的一个持续共同演化的循环;如是的循环一直持续到了今天。
+
1859年,查尔斯·达尔文在他的著作''物种起源''中提到了被子植物和昆虫之间的进化互动。尽管他没有使用共同进化这个词,但他提出了植物和昆虫是如何通过相互的进化变化而进化的。19世纪晚期的博物学家研究了物种间的交互如何导致彼此演变的其他例子。从20世纪40年代开始的由植物病理学家开发的育种程序就是人类诱导共同进化的例子。培育能够抵抗某些疾病作物的新品种有利于病原体种群的快速进化以克服作物的这些抵御。这反过来又需要开发新的抗性作物品种,这样就造成了在作物和疾病之间的一个持续共同演化的循环;如此的循环一直持续到了今天。
    
Coevolution as a major topic for study in nature expanded rapidly after the middle 1960s, when Daniel H. Janzen showed coevolution between acacias and ants (see below) and [[Paul R. Ehrlich]] and [[Peter H. Raven]] suggested how [[Escape and radiate coevolution|coevolution between plants and butterflies]] may have contributed to the diversification of species in both groups. The theoretical underpinnings of coevolution are now well-developed (e.g., the geographic mosaic theory of coevolution), and demonstrate that coevolution can play an important role in driving major evolutionary transitions such as the evolution of sexual reproduction or shifts in ploidy. More recently, it has also been demonstrated that coevolution can influence the structure and function of ecological communities, the evolution of groups of mutualists such as plants and their pollinators, and the dynamics of infectious disease.
 
Coevolution as a major topic for study in nature expanded rapidly after the middle 1960s, when Daniel H. Janzen showed coevolution between acacias and ants (see below) and [[Paul R. Ehrlich]] and [[Peter H. Raven]] suggested how [[Escape and radiate coevolution|coevolution between plants and butterflies]] may have contributed to the diversification of species in both groups. The theoretical underpinnings of coevolution are now well-developed (e.g., the geographic mosaic theory of coevolution), and demonstrate that coevolution can play an important role in driving major evolutionary transitions such as the evolution of sexual reproduction or shifts in ploidy. More recently, it has also been demonstrated that coevolution can influence the structure and function of ecological communities, the evolution of groups of mutualists such as plants and their pollinators, and the dynamics of infectious disease.
第133行: 第133行:  
相思树蚁(''Pseudomyrmex ferruginea'')是一种能保护至少5种金合欢树(''Vachellia'')免受食用牛角相思树的昆虫和其他植物争夺阳光的专性植物蚂蚁,而这种树则为这种蚂蚁及其幼虫提供营养和庇护<ref name="Hölldobler-532">{{cite book |last1=Hölldobler |first1=Bert |last2=Wilson |first2=Edward O. |title=The ants |publisher=Harvard University Press |year=1990 |url=https://archive.org/details/ants0000hlld |url-access=registration |isbn=978-0-674-04075-5 |pages=[https://archive.org/details/ants0000hlld/page/532 532]–533}}</ref><ref>{{cite web|last=National Geographic|title=Acacia Ant Video|url=http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|url-status=dead|archive-url=https://web.archive.org/web/20071107085438/http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|archive-date=2007-11-07}}</ref>。这种互利共生并不是自然而然的:其他蚂蚁种类遵循不同的进化策略,利用树木而不作回报;这些欺诈性的蚂蚁通过破坏树木的生殖器官对寄主施加重大伤害,不过它们对寄主健康的净影响并不一定是负面的,因此难以预测。<ref>{{cite journal |doi=10.1073/pnas.1006872107 |vauthors=Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM |year=2010 |title=Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=107 |issue=40 |pages=17234–9 |pmid=20855614 |pmc=2951420 |bibcode=2010PNAS..10717234P|doi-access=free }}</ref><ref>{{cite journal |title=Kinship and incompatibility between colonies of the acacia ant ''Pseudomyrex ferruginea'' |journal=Behavioral Ecology and Sociobiology |first=Alex |last=Mintzer |author2=Vinson, S.B. |volume=17 |issue=1 |pages=75–78 |doi=10.1007/bf00299432 |jstor=4599807 |year=1985|s2cid=9538185 }}</ref>
 
相思树蚁(''Pseudomyrmex ferruginea'')是一种能保护至少5种金合欢树(''Vachellia'')免受食用牛角相思树的昆虫和其他植物争夺阳光的专性植物蚂蚁,而这种树则为这种蚂蚁及其幼虫提供营养和庇护<ref name="Hölldobler-532">{{cite book |last1=Hölldobler |first1=Bert |last2=Wilson |first2=Edward O. |title=The ants |publisher=Harvard University Press |year=1990 |url=https://archive.org/details/ants0000hlld |url-access=registration |isbn=978-0-674-04075-5 |pages=[https://archive.org/details/ants0000hlld/page/532 532]–533}}</ref><ref>{{cite web|last=National Geographic|title=Acacia Ant Video|url=http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|url-status=dead|archive-url=https://web.archive.org/web/20071107085438/http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|archive-date=2007-11-07}}</ref>。这种互利共生并不是自然而然的:其他蚂蚁种类遵循不同的进化策略,利用树木而不作回报;这些欺诈性的蚂蚁通过破坏树木的生殖器官对寄主施加重大伤害,不过它们对寄主健康的净影响并不一定是负面的,因此难以预测。<ref>{{cite journal |doi=10.1073/pnas.1006872107 |vauthors=Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM |year=2010 |title=Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=107 |issue=40 |pages=17234–9 |pmid=20855614 |pmc=2951420 |bibcode=2010PNAS..10717234P|doi-access=free }}</ref><ref>{{cite journal |title=Kinship and incompatibility between colonies of the acacia ant ''Pseudomyrex ferruginea'' |journal=Behavioral Ecology and Sociobiology |first=Alex |last=Mintzer |author2=Vinson, S.B. |volume=17 |issue=1 |pages=75–78 |doi=10.1007/bf00299432 |jstor=4599807 |year=1985|s2cid=9538185 }}</ref>
   −
==Hosts and parasites==
+
==宿主和寄生虫==
 
{{Main|Host–parasite coevolution}}
 
{{Main|Host–parasite coevolution}}
    
===寄生虫和有性生殖的宿主===
 
===寄生虫和有性生殖的宿主===
[[Host–parasite coevolution]] is the coevolution of a [[host (biology)|host]] and a [[parasite]]. A general characteristic of many viruses, as [[obligate parasite]]s, is that they coevolved alongside their respective hosts. Correlated mutations between the two species enter them into an evolution arms race. Whichever organism, host or parasite, that cannot keep up with the other will be eliminated from their habitat, as the species with the higher average population fitness survives. This race is known as the [[Red Queen hypothesis]].<ref>{{cite journal |author=Van Valen, L. |date=1973 |title=A New Evolutionary Law |journal=Evolutionary Theory |volume=1 |pages=1–30}} cited in: [http://pespmc1.vub.ac.be/REDQUEEN.html The Red Queen Principle]</ref> The Red Queen hypothesis predicts that sexual reproduction allows a host to stay just ahead of its parasite, similar to the [[Red Queen's race]] in ''[[Through the Looking-Glass]]'': "it takes all the running ''you'' can do, to keep in the same place".<ref>{{cite book |last=Carroll |first=Lewis |author-link=Lewis Carroll |orig-year=1871 |title=Through the Looking-glass: And what Alice Found There |url=https://books.google.com/books?id=cJJZAAAAYAAJ |publisher=Macmillan |date=1875 |page=42 |quote=it takes all the running ''you'' can do, to keep in the same place.}}</ref> The host reproduces sexually, producing some offspring with immunity over its parasite, which then evolves in response.<ref>{{cite journal |doi=10.1038/srep10004 |last=Rabajante |first=J. |display-authors=etal |title=Red Queen dynamics in multi-host and multi-parasite interaction system |journal=[[Scientific Reports]] |year=2015 |volume=5 |pages=10004 |pmid=25899168 |pmc=4405699|bibcode=2015NatSR...510004R}}</ref>
+
[[Host–parasite coevolution]] is the coevolution of a [[host (biology)|host]] and a [[parasite]]. A general characteristic of many viruses, as [[obligate parasite]]s, is that they coevolved alongside their respective hosts. Correlated mutations between the two species enter them into an evolution arms race. Whichever organism, host or parasite, that cannot keep up with the other will be eliminated from their habitat, as the species with the higher average population fitness survives. This race is known as the [[Red Queen hypothesis]]. The Red Queen hypothesis predicts that sexual reproduction allows a host to stay just ahead of its parasite, similar to the [[Red Queen's race]] in ''[[Through the Looking-Glass]]'': "it takes all the running ''you'' can do, to keep in the same place". The host reproduces sexually, producing some offspring with immunity over its parasite, which then evolves in response.
    
Host–parasite coevolution is the coevolution of a host and a parasite. A general characteristic of many viruses, as obligate parasites, is that they coevolved alongside their respective hosts. Correlated mutations between the two species enter them into an evolution arms race. Whichever organism, host or parasite, that cannot keep up with the other will be eliminated from their habitat, as the species with the higher average population fitness survives. This race is known as the Red Queen hypothesis. cited in: The Red Queen Principle The Red Queen hypothesis predicts that sexual reproduction allows a host to stay just ahead of its parasite, similar to the Red Queen's race in Through the Looking-Glass: "it takes all the running you can do, to keep in the same place". The host reproduces sexually, producing some offspring with immunity over its parasite, which then evolves in response.
 
Host–parasite coevolution is the coevolution of a host and a parasite. A general characteristic of many viruses, as obligate parasites, is that they coevolved alongside their respective hosts. Correlated mutations between the two species enter them into an evolution arms race. Whichever organism, host or parasite, that cannot keep up with the other will be eliminated from their habitat, as the species with the higher average population fitness survives. This race is known as the Red Queen hypothesis. cited in: The Red Queen Principle The Red Queen hypothesis predicts that sexual reproduction allows a host to stay just ahead of its parasite, similar to the Red Queen's race in Through the Looking-Glass: "it takes all the running you can do, to keep in the same place". The host reproduces sexually, producing some offspring with immunity over its parasite, which then evolves in response.
   −
宿主-寄生虫的共同演化是宿主和寄生虫的共同演化。<ref name="Woolhouse">{{cite journal |doi=10.1038/ng1202-569 |last1=Woolhouse |first1=M. E. J. |last2=Webster |first2=J. P. |last3=Domingo |first3=E. |last4=Charlesworth|first4=B. |last5=Levin |first5=B. R. |title=Biological and biomedical implications of the coevolution of pathogens and their hosts |journal=[[Nature Genetics]] |date=December 2002 |pmid=12457190 |volume=32 |issue=4 |pages=569–77 |url=http://www.era.lib.ed.ac.uk/bitstream/1842/689/2/Charlesworth_Woolhouse.pdf|hdl=1842/689 |s2cid=33145462 |hdl-access=free }}</ref>许多病毒作为专性寄生虫的一个普遍特征是它们与各自的宿主共同进化。这两个物种之间的相关突变使它们进入了进化的军备竞赛。无论是哪种生物、宿主或寄生物,如果不能跟上其他生物的步伐,就会从它们的栖息地消失,因为平均适合度较高的物种会幸存下来。这一种族被称为红皇后假说。红皇后原则红皇后假说预测有性生殖可以让寄主在寄生虫之前保持领先,就像爱丽丝镜中奇遇的红皇后比赛一样: “你可以尽你所能地跑,保持在同一个地方。”。宿主进行有性繁殖,产生一些对寄生虫具有免疫力的后代,然后进化为应对措施。
+
宿主-寄生虫的共同演化是宿主和寄生虫的共同演化。<ref name="Woolhouse">{{cite journal |doi=10.1038/ng1202-569 |last1=Woolhouse |first1=M. E. J. |last2=Webster |first2=J. P. |last3=Domingo |first3=E. |last4=Charlesworth|first4=B. |last5=Levin |first5=B. R. |title=Biological and biomedical implications of the coevolution of pathogens and their hosts |journal=[[Nature Genetics]] |date=December 2002 |pmid=12457190 |volume=32 |issue=4 |pages=569–77 |url=http://www.era.lib.ed.ac.uk/bitstream/1842/689/2/Charlesworth_Woolhouse.pdf|hdl=1842/689 |s2cid=33145462 |hdl-access=free }}</ref>许多病毒作为专性寄生虫的一个普遍特征是它们与各自宿主的共同演化。这两个物种之间的相关突变使它们进入了进化的军备竞赛。无论是哪种生物、宿主或寄生物,如果不能跟上其他生物的步伐,就会从它们的栖息地消失,因为平均适合度较高的物种会幸存下来。这一种族被称为红皇后假说。<ref>{{cite journal |author=Van Valen, L. |date=1973 |title=A New Evolutionary Law |journal=Evolutionary Theory |volume=1 |pages=1–30}} cited in: [http://pespmc1.vub.ac.be/REDQUEEN.html The Red Queen Principle]</ref>红皇后原则红皇后假说预测有性生殖可以让寄主在寄生虫之前保持领先,就像''爱丽丝镜中奇遇''的红皇后比赛一样: “尽你所能地跑,却仍保持在同一个地方。”。<ref>{{cite book |last=Carroll |first=Lewis |author-link=Lewis Carroll |orig-year=1871 |title=Through the Looking-glass: And what Alice Found There |url=https://books.google.com/books?id=cJJZAAAAYAAJ |publisher=Macmillan |date=1875 |page=42 |quote=it takes all the running ''you'' can do, to keep in the same place.}}</ref>宿主进行有性繁殖,产生一些对寄生虫具有免疫力的后代,然后进化为应对措施。<ref>{{cite journal |doi=10.1038/srep10004 |last=Rabajante |first=J. |display-authors=etal |title=Red Queen dynamics in multi-host and multi-parasite interaction system |journal=[[Scientific Reports]] |year=2015 |volume=5 |pages=10004 |pmid=25899168 |pmc=4405699|bibcode=2015NatSR...510004R}}</ref>
    
The parasite–host relationship probably drove the prevalence of sexual reproduction over the more efficient asexual reproduction. It seems that when a parasite infects a host, sexual reproduction affords a better chance of developing resistance (through variation in the next generation), giving sexual reproduction variability for fitness not seen in the asexual reproduction, which produces another generation of the organism susceptible to infection by the same parasite.<ref>{{cite web |title=Sexual reproduction works thanks to ever-evolving host, parasite relationships |website=PhysOrg |url=https://phys.org/news/2011-07-sexual-reproduction-ever-evolving-host-parasite.html |date=7 July 2011}}</ref><ref>{{cite journal |author1=Morran, L.T. |author2=Schmidt, O.G. |author3=Gelarden, I.A. |author4=Parrish, R.C. II |author5= Lively, C.M. |title=Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex |journal=Science |volume=333 |issue=6039 |pages=216–8 |date=8 July 2011 |id=Science.1206360 |bibcode=2011Sci...333..216M |doi=10.1126/science.1206360 |pmid=21737739 |pmc=3402160}}</ref><ref>{{cite encyclopedia |author=Hogan, C. Michael |date=2010 |url=https://editors.eol.org/eoearth/wiki/Virus |title=Virus |encyclopedia=Encyclopedia of Earth |editor=Cutler Cleveland |editor2=Sidney Draggan}}</ref> Coevolution between host and parasite may accordingly be responsible for much of the genetic diversity seen in normal populations, including blood-plasma polymorphism, protein polymorphism, and histocompatibility systems.<ref>{{cite journal |author1=Anderson, R. |author2=May, R. |date=October 1982 |title=Coevolution of hosts and parasites |journal=Parasitology |volume=85 |issue=2 |pages=411–426 |doi=10.1017/S0031182000055360 |pmid=6755367}}</ref>
 
The parasite–host relationship probably drove the prevalence of sexual reproduction over the more efficient asexual reproduction. It seems that when a parasite infects a host, sexual reproduction affords a better chance of developing resistance (through variation in the next generation), giving sexual reproduction variability for fitness not seen in the asexual reproduction, which produces another generation of the organism susceptible to infection by the same parasite.<ref>{{cite web |title=Sexual reproduction works thanks to ever-evolving host, parasite relationships |website=PhysOrg |url=https://phys.org/news/2011-07-sexual-reproduction-ever-evolving-host-parasite.html |date=7 July 2011}}</ref><ref>{{cite journal |author1=Morran, L.T. |author2=Schmidt, O.G. |author3=Gelarden, I.A. |author4=Parrish, R.C. II |author5= Lively, C.M. |title=Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex |journal=Science |volume=333 |issue=6039 |pages=216–8 |date=8 July 2011 |id=Science.1206360 |bibcode=2011Sci...333..216M |doi=10.1126/science.1206360 |pmid=21737739 |pmc=3402160}}</ref><ref>{{cite encyclopedia |author=Hogan, C. Michael |date=2010 |url=https://editors.eol.org/eoearth/wiki/Virus |title=Virus |encyclopedia=Encyclopedia of Earth |editor=Cutler Cleveland |editor2=Sidney Draggan}}</ref> Coevolution between host and parasite may accordingly be responsible for much of the genetic diversity seen in normal populations, including blood-plasma polymorphism, protein polymorphism, and histocompatibility systems.<ref>{{cite journal |author1=Anderson, R. |author2=May, R. |date=October 1982 |title=Coevolution of hosts and parasites |journal=Parasitology |volume=85 |issue=2 |pages=411–426 |doi=10.1017/S0031182000055360 |pmid=6755367}}</ref>
68

个编辑

导航菜单