更改

跳到导航 跳到搜索
添加523字节 、 2022年3月13日 (日) 20:49
第131行: 第131行:  
尽管高精度需要大量的CPU时间,但是通过计算机可以使用数值积分可以得到问题的任意高精度解。在2019年,布林 Breen等人。提出了一种快速的神经网络求解器,使用数字积分器对其进行训练。<ref>{{cite journal |last1=Li |first1=Xiaoming |last2=Liao |first2=Shijun |title=Collisionless periodic orbits in the free-fall three-body problem |journal=New Astronomy |volume=70 |pages=22–26 |year=2019 |arxiv=1805.07980 |doi=10.1016/j.newast.2019.01.003 |bibcode=2019NewA...70...22L}}</ref>
 
尽管高精度需要大量的CPU时间,但是通过计算机可以使用数值积分可以得到问题的任意高精度解。在2019年,布林 Breen等人。提出了一种快速的神经网络求解器,使用数字积分器对其进行训练。<ref>{{cite journal |last1=Li |first1=Xiaoming |last2=Liao |first2=Shijun |title=Collisionless periodic orbits in the free-fall three-body problem |journal=New Astronomy |volume=70 |pages=22–26 |year=2019 |arxiv=1805.07980 |doi=10.1016/j.newast.2019.01.003 |bibcode=2019NewA...70...22L}}</ref>
   −
== N体问题 ==
+
== 历史 ==
   −
==历史==
+
传统意义上的三个物体的引力问题可以追溯到1687年,当时 艾萨克·牛顿 Isaac Newton 发表了他的《自然哲学的数学原理》。在《原理》第一卷的第66号提案及其22个推论中,牛顿首次定义和研究了三个受相互扰动的重力吸引影响的巨大物体的运动问题。在第三册的第25至35条命题中,牛顿也迈出了第一步,将他的66号命题的结果应用到月球理论中,即月球在地球和太阳的引力影响下的运动。牛顿首先用微积分的技巧求解了两体问题,随后写下了三体问题的运动方程,并对它试图求解。但是他意识到三体问题求解的巨大困难,意识到天体之间的小扰动会使得轨道偏离标准的椭圆型轨道。但是他并不怀疑三体问题的可解性。他认为当天体偏离轨道的时候,上帝会出手把轨道推回到原来的状态。
 +
 
 +
 
 +
Laplace和Lagrange引入了N体问题的平均法,并证明了太阳系大约在1000年左右的时间尺度之内的稳定性。
 +
 
 +
 
 +
法国数学家庞加莱Poincare年轻的时候参加一个数学大奖赛,名字是奥斯卡国王二世奖。奥斯卡国王是当时挪威和瑞典的国王,非常热爱数学。庞加莱选择的题目是N体问题的级数解。在十九世纪,数学家普遍认为。
   −
传统意义上的三个物体的引力问题可以追溯到1687年,当时 艾萨克·牛顿 Isaac Newton 发表了他的《自然哲学的数学原理》。在《原理》第一卷的第66号提案及其22个推论中,牛顿首次定义和研究了三个受相互扰动的重力吸引影响的巨大物体的运动问题。在第三册的第25至35条命题中,牛顿也迈出了第一步,将他的66号命题的结果应用到月球理论中,即月球在地球和太阳的引力影响下的运动。牛顿首先用微积分的技巧求解了两体问题,随后写下了三体问题的运动方程,并对它试图求解。但是他意识到三体问题求解的巨大困难,意识到天体之间的小扰动会使得轨道偏离标准的椭圆型轨道。但是他并不怀疑
        第166行: 第171行:     
==N体问题==
 
==N体问题==
三体问题是N体问题的一个特例,它描述了n个物体在其中一种物理力(如重力)下如何运动。这些问题具有收敛幂级数形式的全局解析解,比如,Karl F.Sundman证明n=3的情况,qaudong Wang证明n>3的情况。然而,Sundman级数和Wang级数收敛速度太慢,无法用于实际目的;<ref>[[Florin Diacu]]. [http://www.math.uvic.ca/faculty/diacu/diacuNbody.pdf "The Solution of the ''n''-body Problem"], ''[[The Mathematical Intelligencer]]'', 1996.</ref> 因此,目前有必要通过数值分析以数值积分的形式来近似解,或者在某些情况下,采用经典三角级数近似。原子系统,例如原子、离子和分子,可以用量子N体问题来处理。在经典物理系统中,N体问题通常是指一个星系或一个星系团;行星系统,如恒星、行星及其卫星,也可以被视为N体系统。一些应用可以方便地用扰动理论来处理,其中系统被认为是一个两体问题加上导致偏离假设的无扰动两体轨道的附加力。
+
三体问题是N体问题的一个特例,它描述了n个物体在其中一种物理力(如重力)下如何运动。这些问题具有收敛幂级数形式的全局解析解,比如,Karl F.Sundman证明n=3的情况,Qiudong Wang证明n>3的情况。然而,Sundman级数和Wang级数收敛速度太慢,无法用于实际目的;<ref>[[Florin Diacu]]. [http://www.math.uvic.ca/faculty/diacu/diacuNbody.pdf "The Solution of the ''n''-body Problem"], ''[[The Mathematical Intelligencer]]'', 1996.</ref> 因此,目前有必要通过数值分析以数值积分的形式来近似解,或者在某些情况下,采用经典三角级数近似。原子系统,例如原子、离子和分子,可以用量子N体问题来处理。在经典物理系统中,N体问题通常是指一个星系或一个星系团;行星系统,如恒星、行星及其卫星,也可以被视为N体系统。一些应用可以方便地用扰动理论来处理,其中系统被认为是一个两体问题加上导致偏离假设的无扰动两体轨道的附加力。
    
<br>
 
<br>
11

个编辑

导航菜单