第21行: |
第21行: |
| Neuromorphic engineering is an interdisciplinary subject that takes inspiration from biology, physics, mathematics, computer science, and electronic engineering to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems. It was developed by Carver Mead in the late 1980s. | | Neuromorphic engineering is an interdisciplinary subject that takes inspiration from biology, physics, mathematics, computer science, and electronic engineering to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems. It was developed by Carver Mead in the late 1980s. |
| | | |
− | 神经形态工程是以生物学、物理学、数学、计算机科学和电子工程为基础,设计人工神经系统,如视觉系统、头眼系统、听觉处理器和自主机器人的一门交叉学科。它是由卡弗 · 米德在20世纪80年代后期开发的。
| + | 神经形态工程是以'''<font color="#ff8000">生物学Biology</font>'''、'''<font color="#ff8000">物理学Physics</font>'''、'''<font color="#ff8000">数学Mathematics</font>'''、'''<font color="#ff8000">计算机科学Computer science</font>'''和'''<font color="#ff8000">电子工程Electronic engineering</font>'''等学科为基础,设计人工神经系统(如'''<font color="#ff8000">视觉系统Vision systems</font>'''、头眼系统、听觉处理器以及物理结构和设计原则都受启发于生物神经系统的自主机器人)的一门交叉学科。20世纪80年代后期,卡弗·米德极大地推动了神经形态工程领域的发展。 |
| | | |
− | == Neurological inspiration== | + | ==Neurological inspiration== |
| Neuromorphic engineering is set apart by the inspiration it takes from what we know about the structure and operations of the [[brain]]. Neuromorphic engineering translates what we know about the brain's function into computer systems. Work has mostly focused on replicating the analog nature of [[biological computation]] and the role of [[neuron]]s in [[cognition]]. | | Neuromorphic engineering is set apart by the inspiration it takes from what we know about the structure and operations of the [[brain]]. Neuromorphic engineering translates what we know about the brain's function into computer systems. Work has mostly focused on replicating the analog nature of [[biological computation]] and the role of [[neuron]]s in [[cognition]]. |
| | | |
第144行: |
第144行: |
| 围绕神经形态工程的民主关注可能在未来变得更加深刻。欧盟委员会(European Commission)发现,15至24岁的欧盟公民比55岁以上的欧盟公民更有可能认为机器人像人(而不是像仪器)。当看到一张被定义为“类人”的机器人图片时,年龄在15岁至24岁之间的欧盟公民中有75% 的人表示,这与他们对机器人的想法相符,而55岁以上的欧盟公民中只有57% 的人有同样的反应。因此,类似人类的神经形态系统,可以把它们归入许多欧盟公民希望在未来禁止使用的机器人类别。 | | 围绕神经形态工程的民主关注可能在未来变得更加深刻。欧盟委员会(European Commission)发现,15至24岁的欧盟公民比55岁以上的欧盟公民更有可能认为机器人像人(而不是像仪器)。当看到一张被定义为“类人”的机器人图片时,年龄在15岁至24岁之间的欧盟公民中有75% 的人表示,这与他们对机器人的想法相符,而55岁以上的欧盟公民中只有57% 的人有同样的反应。因此,类似人类的神经形态系统,可以把它们归入许多欧盟公民希望在未来禁止使用的机器人类别。 |
| | | |
− | ===Personhood === | + | ===Personhood=== |
| As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.<ref>{{Cite journal|last=Aicardi|first=Christine|date=September 2018|title=Accompanying technology development in the Human Brain Project: From foresight to ethics management|journal=Futures|volume=102|pages=114–124|doi=10.1016/j.futures.2018.01.005|doi-access=free}}</ref> If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.<ref>{{Cite journal|last=Lim|first=Daniel|date=2014-06-01|title=Brain simulation and personhood: a concern with the Human Brain Project|journal=Ethics and Information Technology|language=en|volume=16|issue=2|pages=77–89|doi=10.1007/s10676-013-9330-5|s2cid=17415814|issn=1572-8439}}</ref> | | As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.<ref>{{Cite journal|last=Aicardi|first=Christine|date=September 2018|title=Accompanying technology development in the Human Brain Project: From foresight to ethics management|journal=Futures|volume=102|pages=114–124|doi=10.1016/j.futures.2018.01.005|doi-access=free}}</ref> If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.<ref>{{Cite journal|last=Lim|first=Daniel|date=2014-06-01|title=Brain simulation and personhood: a concern with the Human Brain Project|journal=Ethics and Information Technology|language=en|volume=16|issue=2|pages=77–89|doi=10.1007/s10676-013-9330-5|s2cid=17415814|issn=1572-8439}}</ref> |
| | | |
第158行: |
第158行: |
| 军民两用联合人工智能中心是美国军队的一个分支,专门从事采购和实施用于战斗的人工智能软件和神经形态硬件。具体应用包括智能耳机/护目镜和机器人。JAIC 打算严重依赖神经形态技术来连接神经形态单位网络中的“每个战士每个射手”。 | | 军民两用联合人工智能中心是美国军队的一个分支,专门从事采购和实施用于战斗的人工智能软件和神经形态硬件。具体应用包括智能耳机/护目镜和机器人。JAIC 打算严重依赖神经形态技术来连接神经形态单位网络中的“每个战士每个射手”。 |
| | | |
− | == Legal considerations== | + | ==Legal considerations== |
| Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref> | | Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref> |
| | | |
第165行: |
第165行: |
| = = 法律方面的考虑 = = 怀疑论者认为,在法律上没有办法应用电子人格,这个人格概念将适用于神经形态技术。在一封由285名法律、机器人、医学和伦理学专家签名的信中,作者们反对欧盟委员会承认“智能机器人”为法人的提议,他们写道,“机器人的法律地位不能从自然人模型中推导出来,因为机器人将拥有人权,如尊严权、完整权、报酬权或公民权,从而直接面对人权。这将有悖于《欧洲联盟基本权利宪章和《保护人权和基本自由公约》。” | | = = 法律方面的考虑 = = 怀疑论者认为,在法律上没有办法应用电子人格,这个人格概念将适用于神经形态技术。在一封由285名法律、机器人、医学和伦理学专家签名的信中,作者们反对欧盟委员会承认“智能机器人”为法人的提议,他们写道,“机器人的法律地位不能从自然人模型中推导出来,因为机器人将拥有人权,如尊严权、完整权、报酬权或公民权,从而直接面对人权。这将有悖于《欧洲联盟基本权利宪章和《保护人权和基本自由公约》。” |
| | | |
− | ===Ownership and property rights=== | + | === Ownership and property rights=== |
| There is significant legal debate around property rights and artificial intelligence. In ''Acohs Pty Ltd v. Ucorp Pty Ltd'', Justice Christopher Jessup of the [[Federal Court of Australia]] found that the [[source code]] for [[Material safety data sheets|Material Safety Data Sheets]] could not be [[Copyright law of Australia|copyrighted]] as it was generated by a [[software interface]] rather than a human author.<ref>{{Cite web|url=http://www.lavan.com.au/advice/intellectual_property_technology/copyright_in_source_code_and_digital_products|title=Copyright in source code and digital products|last=Lavan|website=Lavan|language=en|access-date=2019-05-10}}</ref> The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?<ref>{{cite journal |last1=Eshraghian|first1=Jason K. |title=Human Ownership of Artificial Creativity |journal=Nature Machine Intelligence |date=9 March 2020 |volume=2 |pages=157–160 |doi=10.1038/s42256-020-0161-x}}</ref> | | There is significant legal debate around property rights and artificial intelligence. In ''Acohs Pty Ltd v. Ucorp Pty Ltd'', Justice Christopher Jessup of the [[Federal Court of Australia]] found that the [[source code]] for [[Material safety data sheets|Material Safety Data Sheets]] could not be [[Copyright law of Australia|copyrighted]] as it was generated by a [[software interface]] rather than a human author.<ref>{{Cite web|url=http://www.lavan.com.au/advice/intellectual_property_technology/copyright_in_source_code_and_digital_products|title=Copyright in source code and digital products|last=Lavan|website=Lavan|language=en|access-date=2019-05-10}}</ref> The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?<ref>{{cite journal |last1=Eshraghian|first1=Jason K. |title=Human Ownership of Artificial Creativity |journal=Nature Machine Intelligence |date=9 March 2020 |volume=2 |pages=157–160 |doi=10.1038/s42256-020-0161-x}}</ref> |
| | | |
第195行: |
第195行: |
| :\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S | | :\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S |
| | | |
− | :\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S | + | : \frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S |
| | | |
| as a function of the properties of the physical memristive network and the external sources. In the equation above, <math>\alpha</math> is the "forgetting" time scale constant, <math> \xi=r-1</math> and <math>r=\frac{R_\text{off}}{R_\text{on}}</math> is the ratio of ''off'' and ''on'' values of the limit resistances of the memristors, <math> \vec S </math> is the vector of the sources of the circuit and <math>\Omega</math> is a projector on the fundamental loops of the circuit. The constant <math>\beta</math> has the dimension of a voltage and is associated to the properties of the [[memristor]]; its physical origin is the charge mobility in the conductor. The diagonal matrix and vector <math>W=\operatorname{diag}(\vec W)</math> and <math>\vec W</math> respectively, are instead the internal value of the memristors, with values between 0 and 1. This equation thus requires adding extra constraints on the memory values in order to be reliable. | | as a function of the properties of the physical memristive network and the external sources. In the equation above, <math>\alpha</math> is the "forgetting" time scale constant, <math> \xi=r-1</math> and <math>r=\frac{R_\text{off}}{R_\text{on}}</math> is the ratio of ''off'' and ''on'' values of the limit resistances of the memristors, <math> \vec S </math> is the vector of the sources of the circuit and <math>\Omega</math> is a projector on the fundamental loops of the circuit. The constant <math>\beta</math> has the dimension of a voltage and is associated to the properties of the [[memristor]]; its physical origin is the charge mobility in the conductor. The diagonal matrix and vector <math>W=\operatorname{diag}(\vec W)</math> and <math>\vec W</math> respectively, are instead the internal value of the memristors, with values between 0 and 1. This equation thus requires adding extra constraints on the memory values in order to be reliable. |
第203行: |
第203行: |
| <nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki> | | <nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki> |
| | | |
− | ==See also== | + | ==See also == |
| {{Columns-list|colwidth=18em| | | {{Columns-list|colwidth=18em| |
| * [[AI accelerator (computer hardware)|AI accelerator]] | | * [[AI accelerator (computer hardware)|AI accelerator]] |
第226行: |
第226行: |
| {{Portal bar|Electronics}} | | {{Portal bar|Electronics}} |
| | | |
− | == References== | + | ==References== |
| {{Reflist|40em}} | | {{Reflist|40em}} |
| | | |
第253行: |
第253行: |
| | | |
| | | |
− | *Telluride Neuromorphic Engineering Workshop | + | * Telluride Neuromorphic Engineering Workshop |
| *CapoCaccia Cognitive Neuromorphic Engineering Workshop | | *CapoCaccia Cognitive Neuromorphic Engineering Workshop |
| *Institute of Neuromorphic Engineering | | *Institute of Neuromorphic Engineering |
第266行: |
第266行: |
| *CapoCaccia 认知神经形态工程工作室 | | *CapoCaccia 认知神经形态工程工作室 |
| *神经形态工程研究所 | | *神经形态工程研究所 |
− | * INE 新闻站点。 | + | *INE 新闻站点。 |
| *《神经形态工程学前沿》 | | *《神经形态工程学前沿》 |
− | * 加州理工学院计算与神经系统系。 | + | *加州理工学院计算与神经系统系。 |
| *人脑项目官方网站 | | *人脑项目官方网站 |
| *打造硅脑: 基于生物神经元的计算机芯片可能有助于模拟更大、更复杂的大脑模型。2019年5月1日。SANDEEP RAVINDRAN | | *打造硅脑: 基于生物神经元的计算机芯片可能有助于模拟更大、更复杂的大脑模型。2019年5月1日。SANDEEP RAVINDRAN |