第38行: |
第38行: |
| ==Examples== | | ==Examples== |
| ==案例== | | ==案例== |
− | As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref>{{Cite book|title = A field programmable neural array|last1 = Farquhar|first1 = Ethan|date = May 2006|journal = IEEE International Symposium on Circuits and Systems|pages = 4114–4117|last2 = Hasler|first2 = Paul.|doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons. | + | As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref name=":12">{{Cite book|title = A field programmable neural array|last1 = Farquhar|first1 = Ethan|date = May 2006|journal = IEEE International Symposium on Circuits and Systems|pages = 4114–4117|last2 = Hasler|first2 = Paul.|doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons. |
| | | |
− | As early as 2006, researchers at Georgia Tech published a field programmable neural array. This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of MOSFETs to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
| + | 早在2006年,佐治亚理工学院的研究人员就研发出了一种现场可编程神经阵列。<ref name=":12" />在此之后,一系列越来越复杂的浮栅晶体管阵列被成功研发出来,这些晶体管阵列可以通过在'''<font color="#ff8000">金属-氧化物半导体效应晶体管MOSFET</font>'''的栅极上编程来模拟大脑中神经元的离子通道特性,这也是以硅为主要材料的可编程神经元阵列的最早成功案例之一。 |
| | | |
− | 早在2006年,佐治亚理工学院的研究人员就发表了现场可编程神经阵列。这种芯片是一系列越来越复杂的浮栅晶体管阵列中的第一个,这些晶体管可以在 mosfet 的栅极上编程来模拟大脑中神经元的通道离子特性,这也是硅可编程神经元阵列的首批案例之一。
| + | In November 2011, a group of [[MIT]] researchers created a computer chip that mimics the analog, ion-based communication in a synapse between two neurons using 400 transistors and standard [[CMOS]] manufacturing techniques.<ref name=":13">{{cite web|title=MIT creates "brain chip"|url=http://www.extremetech.com/extreme/105067-mit-creates-brain-chip|access-date=4 December 2012}}</ref><ref name="Neuromorphic silicon paper">{{cite journal|title=Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities|doi=10.3389/fnins.2011.00108|pmid=21991244|pmc=3181466|volume=5|pages=108|journal=Frontiers in Neuroscience|year=2011|last1=Poon|first1=Chi-Sang|last2=Zhou|first2=Kuan|doi-access=free}}</ref> |
| | | |
− | In November 2011, a group of [[MIT]] researchers created a computer chip that mimics the analog, ion-based communication in a synapse between two neurons using 400 transistors and standard [[CMOS]] manufacturing techniques.<ref>{{cite web|title=MIT creates "brain chip"|url=http://www.extremetech.com/extreme/105067-mit-creates-brain-chip|access-date=4 December 2012}}</ref><ref name="Neuromorphic silicon paper">{{cite journal|title=Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities|doi=10.3389/fnins.2011.00108|pmid=21991244|pmc=3181466|volume=5|pages=108|journal=Frontiers in Neuroscience|year=2011|last1=Poon|first1=Chi-Sang|last2=Zhou|first2=Kuan|doi-access=free}}</ref>
| + | 2011年11月,麻省理工学院的一组研究人员研发出一种计算机芯片,该芯片上使用标准的'''<font color="#ff8000">互补金属氧化物半导体CMOS</font>'''制造技术集成了400个晶体管,能够模拟神经元间突触中基于离子的通讯。<ref name=":13" /><ref name="Neuromorphic silicon paper" /> |
− | | |
− | In November 2011, a group of MIT researchers created a computer chip that mimics the analog, ion-based communication in a synapse between two neurons using 400 transistors and standard CMOS manufacturing techniques.
| |
− | | |
− | 2011年11月,麻省理工学院的一组研究人员发明了一种计算机芯片,该芯片使用400个晶体管和标准的 CMOS 制造技术,在两个神经元之间的突触中模拟模拟基于离子的通讯。
| |
| | | |
| In June 2012, [[spintronic]] researchers at [[Purdue University]] presented a paper on the design of a neuromorphic chip using [[Spin valve|lateral spin valve]]s and [[memristor]]s. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.<ref name="Spin Devices Prop">{{Cite arXiv|title=Proposal For Neuromorphic Hardware Using Spin Devices|eprint=1206.3227|last1=Sharad|first1=Mrigank|last2=Augustine|first2=Charles|last3=Panagopoulos|first3=Georgios|last4=Roy|first4=Kaushik|class=cond-mat.dis-nn|year=2012}}</ref> | | In June 2012, [[spintronic]] researchers at [[Purdue University]] presented a paper on the design of a neuromorphic chip using [[Spin valve|lateral spin valve]]s and [[memristor]]s. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.<ref name="Spin Devices Prop">{{Cite arXiv|title=Proposal For Neuromorphic Hardware Using Spin Devices|eprint=1206.3227|last1=Sharad|first1=Mrigank|last2=Augustine|first2=Charles|last3=Panagopoulos|first3=Georgios|last4=Roy|first4=Kaushik|class=cond-mat.dis-nn|year=2012}}</ref> |
| | | |
− | In June 2012, spintronic researchers at Purdue University presented a paper on the design of a neuromorphic chip using lateral spin valves and memristors. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.
| + | 2012年6月,普渡大学的'''<font color="#ff8000">自旋电子学Spintronic</font>'''研究人员发表了一篇关于利用'''<font color="#ff8000">侧向自旋阀Lateral spin valves</font>'''和'''<font color="#ff8000">记忆电阻器Memristors</font>'''设计神经形态芯片的论文。他们认为,这种芯片结构的工作原理与神经元相似,因此可以用于大脑运行机制的复刻方法的测试。此外,这些芯片在能耗方面明显优于传统芯片。<ref name="Spin Devices Prop" /> |
− | | |
− | 2012年6月,普渡大学的自旋电子学研究人员发表了一篇关于利用侧向自旋阀和记忆电阻器设计神经形态芯片的论文。他们认为,这种结构的工作原理与神经元相似,因此可以用来测试复制大脑处理过程的方法。此外,这些芯片明显比传统芯片更节能。
| |
− | | |
− | Research at [[HP Labs]] on Mott memristors has shown that while they can be non-[[Volatile memory|volatile]], the volatile behavior exhibited at temperatures significantly below the [[phase transition]] temperature can be exploited to fabricate a [[neuristor]],<ref name=":0" /> a biologically-inspired device that mimics behavior found in neurons.<ref name=":0">{{Cite journal | doi = 10.1038/nmat3510| pmid = 23241533| title = A scalable neuristor built with Mott memristors| journal = Nature Materials| volume = 12| issue = 2| pages = 114–7| year = 2012| last1 = Pickett | first1 = M. D. | last2 = Medeiros-Ribeiro | first2 = G. | last3 = Williams | first3 = R. S. | bibcode = 2013NatMa..12..114P| s2cid = 16271627| url = https://semanticscholar.org/paper/b6ba6f496ace2b947f111059663e76bb60e9efeb}}</ref> In September 2013, they presented models and simulations that show how the spiking behavior of these neuristors can be used to form the components required for a [[Turing machine]].<ref>{{cite journal|doi=10.1088/0957-4484/24/38/384002|title=Phase transitions enable computational universality in neuristor-based cellular automata|author1=Matthew D Pickett|author2=R Stanley Williams|name-list-style=amp|date=September 2013|publisher=IOP Publishing Ltd|journal=Nanotechnology|volume=24|issue=38|pmid=23999059|bibcode=2013Nanot..24L4002P|at=384002}}</ref>
| |
| | | |
− | Research at HP Labs on Mott memristors has shown that while they can be non-volatile, the volatile behavior exhibited at temperatures significantly below the phase transition temperature can be exploited to fabricate a neuristor, a biologically-inspired device that mimics behavior found in neurons. In September 2013, they presented models and simulations that show how the spiking behavior of these neuristors can be used to form the components required for a Turing machine. | + | Research at [[HP Labs]] on Mott memristors has shown that while they can be non-[[Volatile memory|volatile]], the volatile behavior exhibited at temperatures significantly below the [[phase transition]] temperature can be exploited to fabricate a [[neuristor]],<ref name=":0" /> a biologically-inspired device that mimics behavior found in neurons.<ref name=":0">{{Cite journal | doi = 10.1038/nmat3510| pmid = 23241533| title = A scalable neuristor built with Mott memristors| journal = Nature Materials| volume = 12| issue = 2| pages = 114–7| year = 2012| last1 = Pickett | first1 = M. D. | last2 = Medeiros-Ribeiro | first2 = G. | last3 = Williams | first3 = R. S. | bibcode = 2013NatMa..12..114P| s2cid = 16271627| url = https://semanticscholar.org/paper/b6ba6f496ace2b947f111059663e76bb60e9efeb}}</ref> In September 2013, they presented models and simulations that show how the spiking behavior of these neuristors can be used to form the components required for a [[Turing machine]].<ref name=":14">{{cite journal|doi=10.1088/0957-4484/24/38/384002|title=Phase transitions enable computational universality in neuristor-based cellular automata|author1=Matthew D Pickett|author2=R Stanley Williams|name-list-style=amp|date=September 2013|publisher=IOP Publishing Ltd|journal=Nanotechnology|volume=24|issue=38|pmid=23999059|bibcode=2013Nanot..24L4002P|at=384002}}</ref> |
| | | |
− | 惠普实验室在莫特记忆电阻器上的研究表明,尽管它们可以是非挥发性的,但是在相变温度以下显示的挥发性行为可以被用来制造神经元电阻器,这是一种模仿神经元行为的生物设备。2013年9月,他们展示了模型和仿真,展示了这些神经元的尖峰行为是如何被用来形成图灵机所需的元件的。
| + | '''<font color="#ff8000">惠普实验室HP labs</font>'''在莫特记忆电阻器上的研究表明,尽管它们可以是非'''<font color="#ff8000">易失性Volatile</font>'''的,但是在'''<font color="#ff8000">相变Phase transition</font>'''温度以下时表现出的易失性行为可以被用来制造'''<font color="#ff8000">类神经元电阻器Neuristor</font>'''(一种生物学启发的模仿神经元行为的硬件)<ref name=":0" />。2013年9月,他们通过模型和仿真展示了这些类神经元电阻器的脉冲行为如何产生'''<font color="#ff8000">图灵机Turing machine</font>'''的所需元素。<ref name=":14" /> |
| | | |
− | [[Neurogrid]], built by ''Brains in Silicon'' at [[Stanford University]],<ref>{{cite journal|last1=Boahen|first1=Kwabena|title=Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal=Proceedings of the IEEE|date=24 April 2014|volume=102|issue=5|pages=699–716|doi=10.1109/JPROC.2014.2313565|s2cid=17176371}}</ref> is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.<ref>{{cite journal|doi=10.1038/503022a|pmid = 24201264|title = Neuroelectronics: Smart connections|journal = Nature|volume = 503|issue = 7474|pages = 22–4|year = 2013|last1 = Waldrop|first1 = M. Mitchell|bibcode = 2013Natur.503...22W|doi-access = free}}</ref><ref>{{cite journal|doi=10.1109/JPROC.2014.2313565|title = Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal = Proceedings of the IEEE|volume = 102|issue = 5|pages = 699–716|year = 2014|last1 = Benjamin|first1 = Ben Varkey|last2 = Peiran Gao|last3 = McQuinn|first3 = Emmett|last4 = Choudhary|first4 = Swadesh|last5 = Chandrasekaran|first5 = Anand R.|last6 = Bussat|first6 = Jean-Marie|last7 = Alvarez-Icaza|first7 = Rodrigo|last8 = Arthur|first8 = John V.|last9 = Merolla|first9 = Paul A.|last10 = Boahen|first10 = Kwabena|s2cid = 17176371}}</ref> | + | [[Neurogrid]], built by ''Brains in Silicon'' at [[Stanford University]],<ref name=":15">{{cite journal|last1=Boahen|first1=Kwabena|title=Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal=Proceedings of the IEEE|date=24 April 2014|volume=102|issue=5|pages=699–716|doi=10.1109/JPROC.2014.2313565|s2cid=17176371}}</ref> is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.<ref name=":16">{{cite journal|doi=10.1038/503022a|pmid = 24201264|title = Neuroelectronics: Smart connections|journal = Nature|volume = 503|issue = 7474|pages = 22–4|year = 2013|last1 = Waldrop|first1 = M. Mitchell|bibcode = 2013Natur.503...22W|doi-access = free}}</ref><ref name=":17">{{cite journal|doi=10.1109/JPROC.2014.2313565|title = Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal = Proceedings of the IEEE|volume = 102|issue = 5|pages = 699–716|year = 2014|last1 = Benjamin|first1 = Ben Varkey|last2 = Peiran Gao|last3 = McQuinn|first3 = Emmett|last4 = Choudhary|first4 = Swadesh|last5 = Chandrasekaran|first5 = Anand R.|last6 = Bussat|first6 = Jean-Marie|last7 = Alvarez-Icaza|first7 = Rodrigo|last8 = Arthur|first8 = John V.|last9 = Merolla|first9 = Paul A.|last10 = Boahen|first10 = Kwabena|s2cid = 17176371}}</ref> |
| | | |
− | Neurogrid, built by Brains in Silicon at Stanford University, is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.
| + | '''<font color="#ff8000">神经栅格Neurogrid<ref name=":15" /></font>'''是由斯坦福大学Brains in Silicon公司研发的、使用神经形态工程原理设计的硬件。该电路板由16个定制设计的芯片组成(NeuroCores)。在设计中,每个NeuroCore芯片的模拟电路对65536个神经元的神经元素进行模拟,以最大限度地提高能量效率。模拟出的神经元通过设计的数字电路连接,以最大化脉冲吞吐量。<ref name=":16" /><ref name=":17" /> |
− | | |
− | 神经网格是由斯坦福大学硅谷大脑公司建立的,是一个使用神经形态工程原理设计硬件的例子。该电路板由16个定制设计的芯片组成,称为 NeuroCores。每个 NeuroCore 的模拟电路被设计为模拟65536个神经元的神经元元件,最大限度地提高能量效率。模拟的神经元通过设计的数字电路连接,以最大化脉冲吞吐量。
| |
| | | |
| A research project with implications for neuromorphic engineering is the [[Human Brain Project]] that is attempting to simulate a complete human brain in a supercomputer using biological data. It is made up of a group of researchers in neuroscience, medicine, and computing.<ref>{{cite web|title=Involved Organizations|url=http://www.humanbrainproject.eu/partners.html|access-date=22 February 2013|url-status=dead|archive-url=https://web.archive.org/web/20130302142627/http://www.humanbrainproject.eu/partners.html|archive-date=2 March 2013}}</ref> [[Henry Markram]], the project's co-director, has stated that the project proposes to establish a foundation to explore and understand the brain and its diseases, and to use that knowledge to build new computing technologies. The three primary goals of the project are to better understand how the pieces of the brain fit and work together, to understand how to objectively diagnose and treat brain diseases, and to use the understanding of the human brain to develop neuromorphic computers. That the simulation of a complete human brain will require a supercomputer a thousand times more powerful than today's encourages the current focus on neuromorphic computers.<ref>{{cite web|title=Human Brain Project|url=http://www.humanbrainproject.eu|access-date=22 February 2013}}</ref> $1.3 billion has been allocated to the project by The [[European Commission]].<ref>{{cite web|title=The Human Brain Project and Recruiting More Cyberwarriors|url=http://www.marketplace.org/topics/tech/human-brain-project-and-recruiting-more-cyberwarriors|access-date=22 February 2013|date=January 29, 2013}}</ref> | | A research project with implications for neuromorphic engineering is the [[Human Brain Project]] that is attempting to simulate a complete human brain in a supercomputer using biological data. It is made up of a group of researchers in neuroscience, medicine, and computing.<ref>{{cite web|title=Involved Organizations|url=http://www.humanbrainproject.eu/partners.html|access-date=22 February 2013|url-status=dead|archive-url=https://web.archive.org/web/20130302142627/http://www.humanbrainproject.eu/partners.html|archive-date=2 March 2013}}</ref> [[Henry Markram]], the project's co-director, has stated that the project proposes to establish a foundation to explore and understand the brain and its diseases, and to use that knowledge to build new computing technologies. The three primary goals of the project are to better understand how the pieces of the brain fit and work together, to understand how to objectively diagnose and treat brain diseases, and to use the understanding of the human brain to develop neuromorphic computers. That the simulation of a complete human brain will require a supercomputer a thousand times more powerful than today's encourages the current focus on neuromorphic computers.<ref>{{cite web|title=Human Brain Project|url=http://www.humanbrainproject.eu|access-date=22 February 2013}}</ref> $1.3 billion has been allocated to the project by The [[European Commission]].<ref>{{cite web|title=The Human Brain Project and Recruiting More Cyberwarriors|url=http://www.marketplace.org/topics/tech/human-brain-project-and-recruiting-more-cyberwarriors|access-date=22 February 2013|date=January 29, 2013}}</ref> |
第106行: |
第96行: |
| 欧盟资助了海德堡大学的一系列项目,这些项目导致了 BrainScaleS (神经形态混合系统中受大脑启发的多尺度计算)的发展,这是一台位于德国海德堡大学的混合模拟神经形态超级计算机。它是作为人脑计划神经形态计算平台的一部分而开发的,是 SpiNNaker 超级计算机(基于数字技术)的补充。大脑尺度中使用的体系结构模拟了生物神经元及其在物理层面上的连接; 此外,由于这些组件是由硅制成的,这些模型神经元平均运行864倍(在机器模拟中,24小时的实时时间是100秒)。 | | 欧盟资助了海德堡大学的一系列项目,这些项目导致了 BrainScaleS (神经形态混合系统中受大脑启发的多尺度计算)的发展,这是一台位于德国海德堡大学的混合模拟神经形态超级计算机。它是作为人脑计划神经形态计算平台的一部分而开发的,是 SpiNNaker 超级计算机(基于数字技术)的补充。大脑尺度中使用的体系结构模拟了生物神经元及其在物理层面上的连接; 此外,由于这些组件是由硅制成的,这些模型神经元平均运行864倍(在机器模拟中,24小时的实时时间是100秒)。 |
| | | |
− | ===Neuromorphic sensors=== | + | ===Neuromorphic sensors === |
| ===神经形态传感器=== | | ===神经形态传感器=== |
| The concept of neuromorphic systems can be extended to sensors (not just to computation). An example of this applied to detecting [[light]] is the [[retinomorphic sensor]] or, when employed in an array, the [[event camera]]. | | The concept of neuromorphic systems can be extended to sensors (not just to computation). An example of this applied to detecting [[light]] is the [[retinomorphic sensor]] or, when employed in an array, the [[event camera]]. |
第114行: |
第104行: |
| 神经形态系统的概念可以扩展到传感器(而不仅仅是计算)。用于检测光线的一个例子是视网膜变形传感器,或者在阵列中使用的事件摄像机。 | | 神经形态系统的概念可以扩展到传感器(而不仅仅是计算)。用于检测光线的一个例子是视网膜变形传感器,或者在阵列中使用的事件摄像机。 |
| | | |
− | == Ethical considerations== | + | |
| + | ==Ethical considerations== |
| ==伦理问题== | | ==伦理问题== |
| While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to [[human-like machines]] and [[artificial intelligence]] in general. However, the fact that neuromorphic systems are designed to mimic a [[human brain]] gives rise to unique ethical questions surrounding their usage. | | While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to [[human-like machines]] and [[artificial intelligence]] in general. However, the fact that neuromorphic systems are designed to mimic a [[human brain]] gives rise to unique ethical questions surrounding their usage. |
第128行: |
第119行: |
| 然而,实际上的争论是,神经形态硬件和人工“神经网络”是大脑如何运作或处理信息的极其简化的模型,在大小和功能技术方面的复杂性要低得多,在连接方面的结构则更加规则。将神经形态芯片与大脑进行比较是一种非常粗糙的比较,类似于仅仅因为一架飞机有翅膀和一条尾巴就将它与一只鸟进行比较。事实上,神经认知系统比当前最先进的人工智能具有更多的能量和计算效率,而神经形态工程是一种通过从大脑机制中激发灵感来缩小这种差距的尝试,就像许多工程设计具有生物启发的特征一样。数量级。 | | 然而,实际上的争论是,神经形态硬件和人工“神经网络”是大脑如何运作或处理信息的极其简化的模型,在大小和功能技术方面的复杂性要低得多,在连接方面的结构则更加规则。将神经形态芯片与大脑进行比较是一种非常粗糙的比较,类似于仅仅因为一架飞机有翅膀和一条尾巴就将它与一只鸟进行比较。事实上,神经认知系统比当前最先进的人工智能具有更多的能量和计算效率,而神经形态工程是一种通过从大脑机制中激发灵感来缩小这种差距的尝试,就像许多工程设计具有生物启发的特征一样。数量级。 |
| | | |
− | ===Democratic concerns=== | + | ===Democratic concerns === |
| ===公众担忧=== | | ===公众担忧=== |
| Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref>{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030|author=2015 Study Panel|date=September 2016|work=One Hundred Year Study on Artificial Intelligence (AI100)|publisher=Stanford University}}</ref> Special [[Eurobarometer]] 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of [[European Union]] citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably “human.” The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.<ref name=":1">{{Cite web|url=http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf|title=Special Eurobarometer 382: Public Attitudes Towards Robots|last=European Commission|date=September 2012|website=European Commission}}</ref> | | Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref>{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030|author=2015 Study Panel|date=September 2016|work=One Hundred Year Study on Artificial Intelligence (AI100)|publisher=Stanford University}}</ref> Special [[Eurobarometer]] 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of [[European Union]] citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably “human.” The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.<ref name=":1">{{Cite web|url=http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf|title=Special Eurobarometer 382: Public Attitudes Towards Robots|last=European Commission|date=September 2012|website=European Commission}}</ref> |
第143行: |
第134行: |
| | | |
| ===Personhood=== | | ===Personhood=== |
− | ===人格问题=== | + | === 人格问题=== |
| As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.<ref>{{Cite journal|last=Aicardi|first=Christine|date=September 2018|title=Accompanying technology development in the Human Brain Project: From foresight to ethics management|journal=Futures|volume=102|pages=114–124|doi=10.1016/j.futures.2018.01.005|doi-access=free}}</ref> If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.<ref>{{Cite journal|last=Lim|first=Daniel|date=2014-06-01|title=Brain simulation and personhood: a concern with the Human Brain Project|journal=Ethics and Information Technology|language=en|volume=16|issue=2|pages=77–89|doi=10.1007/s10676-013-9330-5|s2cid=17415814|issn=1572-8439}}</ref> | | As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.<ref>{{Cite journal|last=Aicardi|first=Christine|date=September 2018|title=Accompanying technology development in the Human Brain Project: From foresight to ethics management|journal=Futures|volume=102|pages=114–124|doi=10.1016/j.futures.2018.01.005|doi-access=free}}</ref> If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.<ref>{{Cite journal|last=Lim|first=Daniel|date=2014-06-01|title=Brain simulation and personhood: a concern with the Human Brain Project|journal=Ethics and Information Technology|language=en|volume=16|issue=2|pages=77–89|doi=10.1007/s10676-013-9330-5|s2cid=17415814|issn=1572-8439}}</ref> |
| | | |
第159行: |
第150行: |
| | | |
| ==Legal considerations== | | ==Legal considerations== |
− | == 法律问题 == | + | ==法律问题== |
| Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref> | | Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref> |
| | | |
第206行: |
第197行: |
| <nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki> | | <nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki> |
| | | |
− | ==See also == | + | ==See also== |
− | ==相关词条== | + | == 相关词条 == |
| {{Columns-list|colwidth=18em| | | {{Columns-list|colwidth=18em| |
| * [[AI accelerator (computer hardware)|AI accelerator]] | | * [[AI accelerator (computer hardware)|AI accelerator]] |
第259行: |
第250行: |
| *Telluride Neuromorphic Engineering Workshop | | *Telluride Neuromorphic Engineering Workshop |
| *CapoCaccia Cognitive Neuromorphic Engineering Workshop | | *CapoCaccia Cognitive Neuromorphic Engineering Workshop |
− | *Institute of Neuromorphic Engineering | + | * Institute of Neuromorphic Engineering |
| *INE news site. | | *INE news site. |
| *Frontiers in Neuromorphic Engineering Journal | | *Frontiers in Neuromorphic Engineering Journal |
第267行: |
第258行: |
| | | |
| =<nowiki>外部链接</nowiki>= | | =<nowiki>外部链接</nowiki>= |
− | * 碲化物神经形态工程工作室 | + | *碲化物神经形态工程工作室 |
| *CapoCaccia 认知神经形态工程工作室 | | *CapoCaccia 认知神经形态工程工作室 |
− | * 神经形态工程研究所 | + | *神经形态工程研究所 |
| *INE 新闻站点。 | | *INE 新闻站点。 |
| *《神经形态工程学前沿》 | | *《神经形态工程学前沿》 |