第1行: |
第1行: |
| Short-term plasticity (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]), also called dynamical synapses, refers to a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). STD is caused by depletion of neurotransmitters consumed during the synaptic signaling process at the axon terminal of a pre-synaptic neuron, whereas STF is caused by influx of calcium into the axon terminal after spike generation, which increases the release probability of neurotransmitters. STP has been found in various cortical regions and exhibits great diversity in properties ([[#Markram98|Markram 98]], [[#Dittman00|Dittman 00]], [[#Wang06|Wang 06]]). Synapses in different cortical areas can have varied forms of plasticity, being either STD-dominated, STF-dominated, or showing a mixture of both forms. | | Short-term plasticity (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]), also called dynamical synapses, refers to a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). STD is caused by depletion of neurotransmitters consumed during the synaptic signaling process at the axon terminal of a pre-synaptic neuron, whereas STF is caused by influx of calcium into the axon terminal after spike generation, which increases the release probability of neurotransmitters. STP has been found in various cortical regions and exhibits great diversity in properties ([[#Markram98|Markram 98]], [[#Dittman00|Dittman 00]], [[#Wang06|Wang 06]]). Synapses in different cortical areas can have varied forms of plasticity, being either STD-dominated, STF-dominated, or showing a mixture of both forms. |
| + | |
| + | 短期可塑性 (STP) (Stevens 95, Markram 96, Abbott 97, Zucker 02, Abbott 04),也称为动态突触,是指突触功效随时间以反映突触前活动历史的方式变化的现象 . 在实验中观察到两种对突触功效具有相反影响的 STP。 它们被称为短期抑郁症(STD)和短期促进(STF)。 STD 是由突触前神经元轴突末端的突触信号传导过程中消耗的神经递质消耗引起的,而 STF 是由尖峰产生后钙流入轴突末端引起的,这增加了神经递质的释放概率。 STP 已在不同的皮层区域发现并表现出极大的多样性(Markram 98、Dittman 00、Wang 06)。 不同皮层区域的突触可以具有不同形式的可塑性,要么以 STD 为主,要么以 STF 为主,或显示两种形式的混合。 |
| | | |
| Compared with long-term plasticity ([[#Bi01|Bi 01]]), which is hypothesized as the neural substrate for experience-dependent modification of neural circuit, STP has a shorter time scale, typically on the order of hundreds to thousands of milliseconds. The modification it induces to synaptic efficacy is temporary. Without continued presynaptic activity, the synaptic efficacy will quickly return to its baseline level. | | Compared with long-term plasticity ([[#Bi01|Bi 01]]), which is hypothesized as the neural substrate for experience-dependent modification of neural circuit, STP has a shorter time scale, typically on the order of hundreds to thousands of milliseconds. The modification it induces to synaptic efficacy is temporary. Without continued presynaptic activity, the synaptic efficacy will quickly return to its baseline level. |
| + | |
| + | 与长期可塑性(Bi 01)相比,STP 具有更短的时间尺度,通常为数百到数千毫秒。 它对突触功效的改变是暂时的。 如果没有持续的突触前活动,突触功效将迅速恢复到其基线水平。 |
| | | |
| Although STP appears to be an unavoidable consequence of synaptic physiology, theoretical studies suggest that its role in brain functions can be profound (see, e.g., publications in ([[#ResearchTopic|Research Topic]]) and the references therein). From a computational point of view, the time scale of STP lies between fast neural signaling (on the order of milliseconds) and experience-induced learning (on the order of minutes or more). This is the time scale of many processes that occur in daily life, for example motor control, speech recognition and working memory. It is therefore plausible that STP might serve as a neural substrate for processing of temporal information on the relevant time scales. STP implies that the response of a post-synaptic neuron depends of the history of presynaptic activity, creating information that in principle can be extracted and used. In a large-size network, STP can greatly enrich the network's dynamical behaviors, endowing the neural system with information processing capacities that would be difficult to implement using static connections. These possibilities have led to significant interest in the computational functions of STP within the field of Computational Neuroscience. | | Although STP appears to be an unavoidable consequence of synaptic physiology, theoretical studies suggest that its role in brain functions can be profound (see, e.g., publications in ([[#ResearchTopic|Research Topic]]) and the references therein). From a computational point of view, the time scale of STP lies between fast neural signaling (on the order of milliseconds) and experience-induced learning (on the order of minutes or more). This is the time scale of many processes that occur in daily life, for example motor control, speech recognition and working memory. It is therefore plausible that STP might serve as a neural substrate for processing of temporal information on the relevant time scales. STP implies that the response of a post-synaptic neuron depends of the history of presynaptic activity, creating information that in principle can be extracted and used. In a large-size network, STP can greatly enrich the network's dynamical behaviors, endowing the neural system with information processing capacities that would be difficult to implement using static connections. These possibilities have led to significant interest in the computational functions of STP within the field of Computational Neuroscience. |
| | | |
− | ==Phenomenological model== | + | 尽管 STP 似乎是突触生理学的一个不可避免的结果,但理论研究表明它在大脑功能中的作用可能是深远的(例如,参见(研究主题)中的出版物和其中的参考文献)。从计算的角度来看,STP 的时间尺度介于快速神经信号(毫秒级)和经验诱导学习(分钟级或更长时间)之间。这是日常生活中许多过程的时间尺度,例如运动控制、语音识别和工作记忆。因此,STP 可能作为处理相关时间尺度上的时间信息的神经基质是合理的。 STP 意味着突触后神经元的反应取决于突触前活动的历史,从而产生原则上可以提取和使用的信息。在大型网络中,STP 可以极大地丰富网络的动态行为,赋予神经系统以静态连接难以实现的信息处理能力。这些可能性引起了计算神经科学领域对 STP 计算功能的极大兴趣。 |
| + | |
| + | |
| + | ==现象学模型Phenomenological model== |
| | | |
| The biophysical processes underlying STP are complex. Studies of the computational roles of STP have relied on the creation of simplified phenomenological models ([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]]). | | The biophysical processes underlying STP are complex. Studies of the computational roles of STP have relied on the creation of simplified phenomenological models ([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]]). |