更改

跳到导航 跳到搜索
删除1,516字节 、 2022年7月23日 (六) 02:46
第16行: 第16行:  
这个片段说明,多通道数据可以被分解为没有活动的帧和至少有一个活动电极的帧,这些电极可能接收来自几个神经元的活动。由非活动帧包围的连续活动帧序列可以称为雪崩。所示的雪崩例子的大小为9,因为这是被驱动超过阈值的电极总数。雪崩大小的分布方式几乎符合[[幂律分布]]。由于阵列中的电极数量有限,幂律在阵列大小为60之前就开始向下弯曲切断,但是对于更大的电极阵列,可以看到幂律会延伸得更远。
 
这个片段说明,多通道数据可以被分解为没有活动的帧和至少有一个活动电极的帧,这些电极可能接收来自几个神经元的活动。由非活动帧包围的连续活动帧序列可以称为雪崩。所示的雪崩例子的大小为9,因为这是被驱动超过阈值的电极总数。雪崩大小的分布方式几乎符合[[幂律分布]]。由于阵列中的电极数量有限,幂律在阵列大小为60之前就开始向下弯曲切断,但是对于更大的电极阵列,可以看到幂律会延伸得更远。
   −
[[Image:雪崩尺寸分布.jpg|thumb|500px|right|图4:雪崩尺寸分布。 A, Distribution of sizes from acute slice [[LFP]]s recorded with a 60 electrode array, plotted in log-log space. Actual data are shown in black, while the output of a [[Poisson model]] is shown in red. In the Poisson model, each electrode fires at the same rate as that seen in the actual data, but independently of all the other electrodes. Note the large difference between the two curves. The actual data follow a nearly straight line for sizes from 1- 35; after this point there is a cutoff induced by the electrode array size. The straight line is indicative of a power law, suggesting that the network is operating near the [[self-organized criticality|critical point]] (unpublished data recorded by W. Chen, C. Haldeman, S. Wang, A. Tang, J.M. Beggs). B, Avalanche size distribution for spikes can be approximated by a straight line over three orders of magnitude in probability, without a sharp cutoff as seen in panel A. Data were collected with a 512 electrode array from an acute cortical slice bathed in high potassium and zero magnesium (unpublished work of A. Litke, S. Sher, M. Grivich, D. Petrusca, S. Kachiguine, J.M. Beggs). Spikes were thresholded at -3 standard deviations and were not sorted. Data were binned at 1.2 ms to match the short interelectrode distance of 60 μm. Results similar to A and B are also obtained from cortical slice cultures recorded in culture medium.]]
+
 
 +
[[Image:雪崩尺寸分布.jpg|thumb|500px|right|图4:雪崩尺寸分布。
 +
A,用60个电极阵列记录的急性切片[[局部场电位]]的大小分布,以对数空间绘制。实际数据显示为黑色,而泊松模型的输出显示为红色。在泊松模型中,每个电极的发射速度与实际数据中看到的相同,但独立于所有其他电极。注意这两条曲线之间的巨大差异。实际数据在1-35的尺寸下几乎是一条直线;在这一点之后,存在由电极阵列大小引起的截止。直线表示幂律,表明网络在临界点附近运行(未发表的数据由W. Chen, C. Haldeman, S. Wang, A. Tang, J.M. Beggs记录)。
 +
B,尖峰的雪崩大小分布可以用概率超过三个数量级的直线近似,没有A组中看到的尖锐的截止点。数据是用512个电极阵列从浸泡在高钾和零镁的急性皮层切片中收集的(A. Litke, S. Sher, M. Grivich, D. Petrusca, S. Kachiguine, J. M. Beggs未发表的工作)。峰值以-3个标准差设定阈值,并且未进行分类。数据在1.2ms时合并,以匹配60μm的短电极间距离。从培养基中记录的皮层切片培养中也获得了类似于A和B的结果。]]
 +
 
    
[[幂律分布]]的公式是:
 
[[幂律分布]]的公式是:
第22行: 第26行:  
P(S)=kS^{-\alpha}\,
 
P(S)=kS^{-\alpha}\,
 
</math>
 
</math>
where <math>P(S)</math> is the probability of observing an avalanche of size <math>S\ ,</math> <math>\alpha</math> is the exponent that gives the slope of the power law in a log-log graph, and <math>k</math> is a proportionality constant. For experiments with [[slice culture]]s, the size distribution of avalanches of [[local field potential]]s has an exponent <math>\alpha\approx 1.5\ ,</math> but in recordings of spikes from a different array the exponent is <math>\alpha\approx2.1\ .</math> The reasons behind this difference in exponents are still being explored. It is important to note that a power law distribution is not what would be expected if activity at each electrode were driven independently. An ensemble of uncoupled, Poisson-like processes would lead to an exponential distribution of event sizes. Further, while power laws have been reported for many years in neuroscience in the temporal correlations of single time-series data (e.g., the power spectrum from [[Electroencephalogram|EEG]] (Linkenkaer-Hansen et al, 2001; Worrell et al, 2002), [[Fano factor|Fano]] or [[Allan factor]]s in [[Spike Statistics|spike count statistics]] (Teich et al, 1997), [[neurotransmitter]] secretion times (Lowen et al, 1997), [[ion channel]] fluctuations (Toib et al, 1998), interburst intervals in neuronal cultures (Segev et al, 2002)), they had not been observed from interactions seen in multielectrode data. Thus neuronal avalanches emerge from collective processes in a distributed network.
+
其中<math>P(S)</math>是观察到大小为<math>S</math>的雪崩的概率,<math>\alpha</math>是给出对数图中幂律斜率的指数,<math>k</math>是比例常数。对于切片培养实验,[[局部场电位]]雪崩的大小分布的指数<math>\alpha\approx 1.5 </math>,但在不同阵列的尖峰记录中,指数<math>\alpha\approx2.1</math>。指数差异背后的原因仍在探索中。需要注意的是,如果每个电极上的活动是独立驱动的,则幂律分布不是预期的分布。非耦合类泊松过程的集合将导致事件大小的指数分布。此外,虽然神经科学多年来在单个时间序列数据的时间相关性中报告了幂律(例如,[http://www.scholarpedia.org/article/Electroencephalogram 脑电图]的功率谱(Linkenkaer-Hansen等人,2001;Worrell等人,2002),峰值计数统计中的[https://en.wikipedia.org/wiki/Fano_factor Fano][https://en.wikipedia.org/wiki/Allan_variance Allan]因子(Teich等人,1997),神经递质分泌时间(Lowen等人,1997),[http://www.scholarpedia.org/article/Ion_channel 离子通道][http://www.scholarpedia.org/article/Fluctuations 波动](Toib等人,1998),神经元培养中的爆发间期(Segev等人,2002)),从多电极数据中观察到的相互作用中未观察到。因此,神经雪崩是从分布式网络中的集体过程中产生的。
 
  −
其中<math>P(S)</math>是观察到大小为<math>S</math>的雪崩的概率,</math> <math>\alpha</math>是给出对数图中幂律斜率的指数,<math>k</math>是比例常数。对于切片培养实验,[[局部场电位]]雪崩的大小分布的指数<math>\alpha\approx 1.5 </math>,但在不同阵列的尖峰记录中,指数<math>\alpha\approx2.1\。指数差异背后的原因仍在探索中。需要注意的是,如果独立驱动每个电极上的活性,则幂律分布不是预期的分布。非耦合类泊松过程的集合将导致事件大小的指数分布。此外,虽然神经科学多年来在单个时间序列数据的时间相关性中报告了幂律(例如,脑电图的功率谱(Linkenkaer-Hansen等人,2001;Worrell等人,2002),峰计数统计中的Fano或Allan因子(Teich等人,1997),神经递质分泌时间(Lowen等人,1997),离子通道波动(Toib等人,1998),神经元培养中的爆发间期(Segev等人,2002)),从多电极数据中观察到的相互作用中未观察到。因此,神经元雪崩是从分布式网络中的集体过程中产生的。
      
===重复的雪崩模式===
 
===重复的雪崩模式===
77

个编辑

导航菜单