更改

跳到导航 跳到搜索
添加2字节 、 2022年7月23日 (六) 03:12
第44行: 第44行:  
明确预测神经活动雪崩的模型包括Herz和Hopfield(1995)的工作,该模型将神经网络中的混响与地震大小的幂律分布联系起来。同样值得注意的是Eurich、Hermann和Ernst(2002)的工作,他们预测来自全局耦合的非线性阈值元素网络的雪崩大小分布应该有一个<math>\alpha=1.5</math>的指数。值得注意的是,这个指数与实验报告相吻合(Beggs和Plenz,2003)。
 
明确预测神经活动雪崩的模型包括Herz和Hopfield(1995)的工作,该模型将神经网络中的混响与地震大小的幂律分布联系起来。同样值得注意的是Eurich、Hermann和Ernst(2002)的工作,他们预测来自全局耦合的非线性阈值元素网络的雪崩大小分布应该有一个<math>\alpha=1.5</math>的指数。值得注意的是,这个指数与实验报告相吻合(Beggs和Plenz,2003)。
   −
这里更详细地描述了一个分支过程模型(Harris, 1989; Beggs and Plenz, 2003; Haldeman and Beggs, 2005; reviewed in Vogels et al, 2005),因为它既能捕捉到雪崩大小的幂律分布,又能观察到数据中可重复的活动序列。在该模型中,在一个时间步长处于活动状态的处理单元将在下一个时间步长中平均产生<math>\sigma</math>处理单元中的活动。<math>\sigma</math>被称为==分支参数==,可以被认为是这个比率的预期值。
+
这里更详细地描述了一个分支过程模型(Harris, 1989; Beggs and Plenz, 2003; Haldeman and Beggs, 2005; reviewed in Vogels et al, 2005),因为它既能捕捉到雪崩大小的幂律分布,又能观察到数据中可重复的活动序列。在该模型中,在一个时间步长处于活动状态的处理单元将在下一个时间步长中平均产生<math>\sigma</math>处理单元中的活动。<math>\sigma</math>被称为'''分支参数''',可以被认为是这个比率的预期值。
    
:<math>
 
:<math>
77

个编辑

导航菜单