第2行: |
第2行: |
| | | |
| The '''Ermentrout-Kopell canonical model''' is better known as the "theta model" and is a simple one-dimensional model for the spiking of a [[neuron]]. It is closely related to the [[quadratic integrate and fire neuron]]. The model takes the following form: | | The '''Ermentrout-Kopell canonical model''' is better known as the "theta model" and is a simple one-dimensional model for the spiking of a [[neuron]]. It is closely related to the [[quadratic integrate and fire neuron]]. The model takes the following form: |
| + | |
| + | Ermentrout-Kopell规范模型被称为“θ模型”,是一个简单的'''神经元'''尖峰的一维模型。它与'''二次积分和放电神经元'''密切相关。模型的形式如下: |
| | | |
| :<math>\label{theta} | | :<math>\label{theta} |
第11行: |
第13行: |
| where <math> I(t) </math> are the inputs to the model. The variable <math> \theta </math> lies on the unit circle and ranges between 0 and <math>2\pi\ .</math> When <math> \theta=\pi </math> the neuron "spikes", that is, it produces an [[action potential]]. | | where <math> I(t) </math> are the inputs to the model. The variable <math> \theta </math> lies on the unit circle and ranges between 0 and <math>2\pi\ .</math> When <math> \theta=\pi </math> the neuron "spikes", that is, it produces an [[action potential]]. |
| | | |
− | Ermentrout-Kopell规范模型被称为“θ模型”,是一个简单的神经元尖峰的一维模型。它与二次积分和放电神经元密切相关。模型的形式如下:图1:极限环上的鞍节点。模型的输入在哪里。变量在单位圆上,取值范围在0到神经元“刺突”即产生动作电位之间。
| + | 图1:极限环上的鞍节点。模型的输入在哪里。变量在单位圆上,取值范围在0到神经元“刺突”即产生'''动作电位'''之间。 |
| | | |
| ==Derivation== | | ==Derivation== |
第216行: |
第218行: |
| [[Category:Models of Neurons]] | | [[Category:Models of Neurons]] |
| [[Category:Eponymous]] | | [[Category:Eponymous]] |
− |
| |
− |
| |
− | ==References==
| |
− |
| |
− | *W. Chester, The forced oscillations of a simple pendulum, J. Inst. Maths. Appl. '''15''' (1975) 298-306.
| |
− |
| |
− | *G.B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM-J.-Appl.-Math, '''46''' (1986), 233-253.
| |
− |
| |
− | *B. Ermentrout, Type I membranes, phase resetting curves, and synchrony. Neural-Comput. '''8''', (1996) 979-1001
| |
− |
| |
− | *F.C. Hoppensteadt, E.M. Izhikevich, Synchronization of MEMS resonators and mechanical neurocomputing, IEEE Trans. Circs. Systems, '''48''' (2001) 133-138.
| |
− |
| |
− | *F. C. Hoppendsteadt and E.M. Izhikevich (1997) Weakly Connected Neural Networks. Springer-Verlag, NY.
| |
− |
| |
− | *J. Stoker, Nonlinear Vibrations, Interscience, 1951.
| |
− |
| |
− | *F.M. Salam, J.E. Marsden, P.P. Varaiya, Arnold diffusion in the swing equations of a power system, IEEE Trans. Circuits and Systems, '''31''' (1984) 673-688.
| |
− |
| |
− | *A.J. Viterbi, Principles of Coherent Communication, McGraw-Hill, New York, 1966.
| |
− |
| |
− | *P. Horowitz, W. Hill, The Art of Electronics, Camb. U. Press, 1989.
| |
− |
| |
− | *R.P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Menlo Park, 1965.
| |
− |
| |
− | '''Internal references'''
| |
− |
| |
− | *Yuri A. Kuznetsov (2006) Andronov-Hopf bifurcation. Scholarpedia, 1(10):1858.
| |
− |
| |
− | *John Guckenheimer (2007) Bifurcation. Scholarpedia, 2(6):1517.
| |
− |
| |
− | *Valentino Braitenberg (2007) Brain. Scholarpedia, 2(11):2918.
| |
− |
| |
− | *James Meiss (2007) Dynamical systems. Scholarpedia, 2(2):1629.
| |
− |
| |
− | *Eugene M. Izhikevich (2007) Equilibrium. Scholarpedia, 2(10):2014.
| |
− |
| |
− | *Harold Lecar (2007) Morris-Lecar model. Scholarpedia, 2(10):1333.
| |
− |
| |
− | *James Murdock (2006) Normal forms. Scholarpedia, 1(10):1902.
| |
− |
| |
− | *Jeff Moehlis, Kresimir Josic, Eric T. Shea-Brown (2006) Periodic orbit. Scholarpedia, 1(7):1358.
| |
− |
| |
− | *Yuri A. Kuznetsov (2006) Saddle-node bifurcation. Scholarpedia, 1(10):1859.
| |
− |
| |
− | *Philip Holmes and Eric T. Shea-Brown (2006) Stability. Scholarpedia, 1(10):1838.
| |
− |
| |
− | *Frank Hoppensteadt (2006) Voltage-controlled oscillations in neurons. Scholarpedia, 1(11):1599.
| |
− |
| |
| ==See Also== | | ==See Also== |
| Integrate-and-fire neuron, Neural excitability, Quadratic integrate-and-fire neuron, Saddle-node on invariant circle bifurcation, Voltage-controlled oscillations in neurons | | Integrate-and-fire neuron, Neural excitability, Quadratic integrate-and-fire neuron, Saddle-node on invariant circle bifurcation, Voltage-controlled oscillations in neurons |