更改

跳到导航 跳到搜索
删除1,970字节 、 2022年7月27日 (三) 15:17
无编辑摘要
第2行: 第2行:     
The '''Ermentrout-Kopell canonical model''' is better known as the "theta model" and is a simple one-dimensional model for the spiking of a [[neuron]].  It is closely related to the [[quadratic integrate and fire neuron]].  The model takes the following form:
 
The '''Ermentrout-Kopell canonical model''' is better known as the "theta model" and is a simple one-dimensional model for the spiking of a [[neuron]].  It is closely related to the [[quadratic integrate and fire neuron]].  The model takes the following form:
 +
 +
Ermentrout-Kopell规范模型被称为“θ模型”,是一个简单的'''神经元'''尖峰的一维模型。它与'''二次积分和放电神经元'''密切相关。模型的形式如下:
    
:<math>\label{theta}
 
:<math>\label{theta}
第11行: 第13行:  
where <math> I(t) </math> are the inputs to the model.  The variable <math> \theta </math> lies on the unit circle and ranges between 0 and <math>2\pi\ .</math>  When <math> \theta=\pi </math> the neuron "spikes", that is, it produces an [[action potential]].   
 
where <math> I(t) </math> are the inputs to the model.  The variable <math> \theta </math> lies on the unit circle and ranges between 0 and <math>2\pi\ .</math>  When <math> \theta=\pi </math> the neuron "spikes", that is, it produces an [[action potential]].   
   −
Ermentrout-Kopell规范模型被称为“θ模型”,是一个简单的神经元尖峰的一维模型。它与二次积分和放电神经元密切相关。模型的形式如下:图1:极限环上的鞍节点。模型的输入在哪里。变量在单位圆上,取值范围在0到神经元“刺突”即产生动作电位之间。  
+
图1:极限环上的鞍节点。模型的输入在哪里。变量在单位圆上,取值范围在0到神经元“刺突”即产生'''动作电位'''之间。  
    
==Derivation==
 
==Derivation==
第216行: 第218行:  
[[Category:Models of Neurons]]
 
[[Category:Models of Neurons]]
 
[[Category:Eponymous]]
 
[[Category:Eponymous]]
  −
  −
==References==
  −
  −
*W. Chester, The forced oscillations of a simple pendulum, J. Inst. Maths. Appl. '''15''' (1975) 298-306.
  −
  −
*G.B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM-J.-Appl.-Math, '''46''' (1986), 233-253.
  −
  −
*B. Ermentrout, Type I membranes, phase resetting curves, and synchrony. Neural-Comput. '''8''', (1996) 979-1001
  −
  −
*F.C. Hoppensteadt, E.M. Izhikevich, Synchronization of MEMS resonators and mechanical neurocomputing, IEEE Trans. Circs. Systems, '''48''' (2001) 133-138.
  −
  −
*F. C. Hoppendsteadt and E.M. Izhikevich (1997) Weakly Connected Neural Networks. Springer-Verlag, NY.
  −
  −
*J. Stoker, Nonlinear Vibrations, Interscience, 1951.
  −
  −
*F.M. Salam, J.E. Marsden, P.P. Varaiya, Arnold diffusion in the swing equations of a power system, IEEE Trans. Circuits and Systems, '''31''' (1984) 673-688.
  −
  −
*A.J. Viterbi, Principles of Coherent Communication, McGraw-Hill, New York, 1966.
  −
  −
*P. Horowitz, W. Hill, The Art of Electronics, Camb. U. Press, 1989.
  −
  −
*R.P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Menlo Park, 1965.
  −
  −
'''Internal references'''
  −
  −
*Yuri A. Kuznetsov (2006) Andronov-Hopf bifurcation. Scholarpedia, 1(10):1858.
  −
  −
*John Guckenheimer (2007) Bifurcation. Scholarpedia, 2(6):1517.
  −
  −
*Valentino Braitenberg (2007) Brain. Scholarpedia, 2(11):2918.
  −
  −
*James Meiss (2007) Dynamical systems. Scholarpedia, 2(2):1629.
  −
  −
*Eugene M. Izhikevich (2007) Equilibrium. Scholarpedia, 2(10):2014.
  −
  −
*Harold Lecar (2007) Morris-Lecar model. Scholarpedia, 2(10):1333.
  −
  −
*James Murdock (2006) Normal forms. Scholarpedia, 1(10):1902.
  −
  −
*Jeff Moehlis, Kresimir Josic, Eric T. Shea-Brown (2006) Periodic orbit. Scholarpedia, 1(7):1358.
  −
  −
*Yuri A. Kuznetsov (2006) Saddle-node bifurcation. Scholarpedia, 1(10):1859.
  −
  −
*Philip Holmes and Eric T. Shea-Brown (2006) Stability. Scholarpedia, 1(10):1838.
  −
  −
*Frank Hoppensteadt (2006) Voltage-controlled oscillations in neurons. Scholarpedia, 1(11):1599.
  −
   
==See Also==
 
==See Also==
 
Integrate-and-fire neuron, Neural excitability, Quadratic integrate-and-fire neuron, Saddle-node on invariant circle bifurcation, Voltage-controlled oscillations in neurons
 
Integrate-and-fire neuron, Neural excitability, Quadratic integrate-and-fire neuron, Saddle-node on invariant circle bifurcation, Voltage-controlled oscillations in neurons
104

个编辑

导航菜单