更改

跳到导航 跳到搜索
添加1字节 、 2022年7月28日 (四) 10:28
第202行: 第202行:  
==Appendix A: Derivation of a temporal filter for short-term depression==
 
==Appendix A: Derivation of a temporal filter for short-term depression==
   −
We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>$\tau_s \ll \tau_d$):
+
We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>):
   −
我们考虑方程式中基于速率的动态。 \ref{poisson} 用于抑郁症主导的突触 <math>u^+ \approx U</math>和比抑郁症动力学快得多的突触反应 ($\tau_s \ll \tau_d$ ):
+
我们考虑方程式中基于速率的动态。方程式(3)用于抑郁症主导的突触 <math>u^+ \approx U</math>和比抑郁症动力学快得多的突触反应 (<math>\tau_s \ll \tau_d</math>):
    
<math>
 
<math>
第213行: 第213行:  
</math>
 
</math>
   −
The aim is to derive a filter $\chi$ that relates the output synaptic current $I$ to the input rate $R$.
+
The aim is to derive a filter<math>\chi</math>that relates the output synaptic current $I$ to the input rate $R$.
 
Note that because the input rate $R$ enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations $R_1 \rho(t)$ of the firing rate $R(t)$ around a constant rate $R_0$, that is,
 
Note that because the input rate $R$ enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations $R_1 \rho(t)$ of the firing rate $R(t)$ around a constant rate $R_0$, that is,
  
104

个编辑

导航菜单