更改

跳到导航 跳到搜索
删除653字节 、 2022年7月28日 (四) 12:18
第204行: 第204行:  
We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>):
 
We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>):
   −
我们考虑方程式中基于速率的动态。方程式(3)用于抑郁症主导的突触 <math>u^+ \approx U</math>和比抑郁症动力学快得多的突触反应 (<math>\tau_s \ll \tau_d</math>):
+
我们考虑方程式中基于速率的动态。等式(3)用于抑郁症主导的突触 <math>u^+ \approx U</math>和比抑郁症动力学快得多的突触反应 (<math>\tau_s \ll \tau_d</math>):
    
<math>
 
<math>
第215行: 第215行:  
The aim is to derive a filter<math>\chi</math>that relates the output synaptic current <math>I</math>to the input rate<math>R</math>.
 
The aim is to derive a filter<math>\chi</math>that relates the output synaptic current <math>I</math>to the input rate<math>R</math>.
 
Note that because the input rate<math>R</math>enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations <math>R_1 \rho(t)</math>of the firing rate <math>R(t)</math>around a constant rate <math>R_0</math>, that is,
 
Note that because the input rate<math>R</math>enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations <math>R_1 \rho(t)</math>of the firing rate <math>R(t)</math>around a constant rate <math>R_0</math>, that is,
 +
 +
目的是导出一个过滤器 <math>\chi</math>,它将输出突触电流 <math>I</math>与输入速率 <math>R</math> 联系起来。请注意,由于输入速率 <math>R</math>以乘法方式进入方程,因此输入-输出传递函数是非线性的。然而,线性滤波器可以通过考虑在恒定速率 <math>R_0</math>附近的发射率<math>R(t)</math>的小扰动 <math>R_1 \rho(t)</math>,即
    
<math>
 
<math>
第221行: 第223行:  
</math>
 
</math>
   −
目的是导出一个过滤器 <math>\chi</math>,它将输出突触电流 <math>I</math>与输入速率 <math>R</math> 联系起来。请注意,由于输入速率 <math>R</math>以乘法方式进入方程,因此输入-输出传递函数是非线性的。然而,线性滤波器可以通过考虑在恒定速率 <math>R_0</math>附近的发射率<math>R(t)</math>的小扰动 <math>R_1 \rho(t)</math>,即
+
We assume that such small perturbations in <math>R</math>produce small perturbations in the variable<math>x</math>around its steady state value<math>x_0>0</math>
 
  −
<math>
  −
R(t):=R_0 + R_1 \rho (t)\, \quad\text{with}\quad R_0,R_1>0 \quad\text{and}\quad R_1\ll R_0 \, .
  −
\label{eq:appA_pert}
  −
</math>
     −
We assume that such small perturbations in <math>R</math>produce small perturbations in the variable<math>x</math>around its steady state value<math>x_0>0</math>:
+
我们假设 <math>R</math>中的这种小扰动会在变量<math>x</math>中围绕其稳态值<math>x_0>0</math>产生小的扰动:
 
<math>
 
<math>
 
x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, .
 
x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, .
第234行: 第231行:  
</math>
 
</math>
   −
<nowiki>我们假设 $R$ 中的这种小扰动会在变量 $x$ 中围绕其稳态值 $x_0>0$ 产生小的扰动: [math]\displaystyle{ x(t) = x_0 + x_1(t)\quad\ text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . \label{eq:appA_x01} }[/math]</nowiki>
+
We can now linearize the dynamics of <math>x(t)</math> around the steady-state value <math>x_0</math>by approximating the product
   −
We can now linearize the dynamics of $x(t)$ around the steady-state value $x_0$ by approximating the product
+
我们现在可以通过近似乘积将 <math>x(t)</math>的动态线性化为围绕稳态值<math>x_0</math>
 
  −
我们现在可以通过近似乘积将 $x(t)$ 的动态线性化为围绕稳态值 $x_0$
      
<math>
 
<math>
第361行: 第356行:     
Finally, the inverse Fourier transform of Eq.(19)reads
 
Finally, the inverse Fourier transform of Eq.(19)reads
 +
 +
最后,等式(19)的傅里叶逆变换读取
 
<math>
 
<math>
 
\begin{eqnarray}
 
\begin{eqnarray}
第367行: 第364行:  
\end{eqnarray}
 
\end{eqnarray}
 
</math>
 
</math>
 +
 
with
 
with
 +
 +
以及
 +
 
<math>
 
<math>
\begin{eqnarray}
  −
\chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,.
  −
\label{eq:appA_chi_final}
  −
\end{eqnarray}
  −
</math>
  −
  −
最后,等式(19)的傅里叶逆变换读取 <math>
  −
\begin{eqnarray}
  −
I(t) = I_0  + \frac{I_0 R_1}{R_0}  \int {\rm d}\tau \, \chi(\tau)  \rho(t-\tau)
  −
\label{eq:appA_I_final}
  −
\end{eqnarray}
  −
</math>以及<math>
   
\begin{eqnarray}
 
\begin{eqnarray}
 
\chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,.
 
\chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,.
104

个编辑

导航菜单