更改

跳到导航 跳到搜索
添加154字节 、 2022年7月29日 (五) 09:57
无编辑摘要
第1行: 第1行:  
此词条由读书会词条梳理志愿者(Glh20100487)翻译审校,未经专家审核,带来阅读不便,请见谅。
 
此词条由读书会词条梳理志愿者(Glh20100487)翻译审校,未经专家审核,带来阅读不便,请见谅。
   −
<nowiki><font color="#32CD32"> 本词条无Wikipedia链接是参考外网文献自行搬运</font></nowiki>
+
<font color="#32CD32"> 本词条无Wikipedia链接是参考外网文献自行搬运</font>
   −
<nowiki><font color="#32CD32">在格式编辑阶段需要另行编辑的有(1)文中公式需居中;(2)公式编号可参考原文链接;(3)补充图片</font></nowiki>
+
<font color="#32CD32">在格式编辑阶段需要另行编辑的有(1)文中公式需居中;(2)公式编号可参考原文链接;(3)补充图片</font>
    
Short-term plasticity (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]), also called dynamical synapses, refers to a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). STD is caused by depletion of neurotransmitters consumed during the synaptic signaling process at the axon terminal of a pre-synaptic neuron, whereas STF is caused by influx of calcium into the axon terminal after spike generation, which increases the release probability of neurotransmitters. STP has been found in various cortical regions and exhibits great diversity in properties ([[#Markram98|Markram 98]], [[#Dittman00|Dittman 00]], [[#Wang06|Wang 06]]). Synapses in different cortical areas can have varied forms of plasticity, being either STD-dominated, STF-dominated, or showing a mixture of both forms.
 
Short-term plasticity (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]), also called dynamical synapses, refers to a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). STD is caused by depletion of neurotransmitters consumed during the synaptic signaling process at the axon terminal of a pre-synaptic neuron, whereas STF is caused by influx of calcium into the axon terminal after spike generation, which increases the release probability of neurotransmitters. STP has been found in various cortical regions and exhibits great diversity in properties ([[#Markram98|Markram 98]], [[#Dittman00|Dittman 00]], [[#Wang06|Wang 06]]). Synapses in different cortical areas can have varied forms of plasticity, being either STD-dominated, STF-dominated, or showing a mixture of both forms.
第11行: 第11行:  
Compared with long-term plasticity ([[#Bi01|Bi 01]]), which is hypothesized as the neural substrate for experience-dependent modification of neural circuit, STP has a shorter time scale, typically on the order of hundreds to thousands of milliseconds.  The modification it induces to synaptic efficacy is temporary.  Without continued presynaptic activity, the synaptic efficacy will quickly return to its baseline level.
 
Compared with long-term plasticity ([[#Bi01|Bi 01]]), which is hypothesized as the neural substrate for experience-dependent modification of neural circuit, STP has a shorter time scale, typically on the order of hundreds to thousands of milliseconds.  The modification it induces to synaptic efficacy is temporary.  Without continued presynaptic activity, the synaptic efficacy will quickly return to its baseline level.
   −
与长期可塑性(Bi 01)相比,STP 具有更短的时间尺度,通常为数百到数千毫秒。 它对突触功效的改变是暂时的。 如果没有持续的突触前活动,突触功效将迅速恢复到其基线水平。
+
与长期可塑性([[#Bi01|Bi 01]])相比,STP 具有更短的时间尺度,通常为数百到数千毫秒。 它对突触功效的改变是暂时的。 如果没有持续的突触前活动,突触功效将迅速恢复到其基线水平。
    
Although STP appears to be an unavoidable consequence of synaptic physiology, theoretical studies suggest that its role in brain functions can be profound (see, e.g., publications in ([[#ResearchTopic|Research Topic]]) and the references therein). From a computational point of view, the time scale of STP lies between fast neural signaling (on the order of milliseconds) and experience-induced learning (on the order of minutes or more).  This is the time scale of many processes that occur in daily life, for example motor control, speech recognition and working memory. It is therefore plausible that STP might serve as a neural substrate for processing of temporal information on the relevant time scales. STP implies that the response of a post-synaptic neuron depends of the history of presynaptic activity, creating information that in principle can be extracted and used. In a large-size network, STP can greatly enrich the network's dynamical behaviors, endowing the neural system with information processing capacities that would be difficult to implement using static connections.  These possibilities have led to significant interest in the computational functions of STP within the field of Computational Neuroscience.
 
Although STP appears to be an unavoidable consequence of synaptic physiology, theoretical studies suggest that its role in brain functions can be profound (see, e.g., publications in ([[#ResearchTopic|Research Topic]]) and the references therein). From a computational point of view, the time scale of STP lies between fast neural signaling (on the order of milliseconds) and experience-induced learning (on the order of minutes or more).  This is the time scale of many processes that occur in daily life, for example motor control, speech recognition and working memory. It is therefore plausible that STP might serve as a neural substrate for processing of temporal information on the relevant time scales. STP implies that the response of a post-synaptic neuron depends of the history of presynaptic activity, creating information that in principle can be extracted and used. In a large-size network, STP can greatly enrich the network's dynamical behaviors, endowing the neural system with information processing capacities that would be difficult to implement using static connections.  These possibilities have led to significant interest in the computational functions of STP within the field of Computational Neuroscience.
   −
尽管 STP 似乎是突触生理学的一个不可避免的结果,但理论研究表明它在大脑功能中的作用可能是深远的(例如,参见(研究主题)中的出版物和其中的参考文献)。从计算的角度来看,STP 的时间尺度介于快速神经信号(毫秒级)和经验诱导学习(分钟级或更长时间)之间。这是日常生活中许多过程的时间尺度,例如运动控制、语音识别和工作记忆。因此,STP 可能作为处理相关时间尺度上的时间信息的神经基质是合理的。 STP 意味着突触后神经元的反应取决于突触前活动的历史,从而产生原则上可以提取和使用的信息。在大型网络中,STP 可以极大地丰富网络的动态行为,赋予神经系统以静态连接难以实现的信息处理能力。这些可能性引起了计算神经科学领域对 STP 计算功能的极大兴趣。
+
尽管 STP 似乎是突触生理学的一个不可避免的结果,但理论研究表明它在大脑功能中的作用可能是深远的(例如,参见([[#ResearchTopic|Research Topic]])中的出版物和其中的参考文献)。从计算的角度来看,STP 的时间尺度介于快速神经信号(毫秒级)和经验诱导学习(分钟级或更长时间)之间。这是日常生活中许多过程的时间尺度,例如运动控制、语音识别和工作记忆。因此,STP 可能作为处理相关时间尺度上的时间信息的神经基质是合理的。 STP 意味着突触后神经元的反应取决于突触前活动的历史,从而产生原则上可以提取和使用的信息。在大型网络中,STP 可以极大地丰富网络的动态行为,赋予神经系统以静态连接难以实现的信息处理能力。这些可能性引起了计算神经科学领域对 STP 计算功能的极大兴趣。
    
==现象学模型Phenomenological model==
 
==现象学模型Phenomenological model==
第21行: 第21行:  
The biophysical processes underlying STP are complex. Studies of the computational roles of STP have relied on the creation of simplified phenomenological models ([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]]).
 
The biophysical processes underlying STP are complex. Studies of the computational roles of STP have relied on the creation of simplified phenomenological models ([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]]).
   −
STP 背后的生物物理过程很复杂。 对 STP 计算作用的研究依赖于创建简化的现象学模型(Abbott 97,Markram 98,Tsodyks 98)。
+
STP 背后的生物物理过程很复杂。 对 STP 计算作用的研究依赖于创建简化的现象学模型([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]])。
    
In the model proposed by Tsodyks and Markram ([[#Tsodyks98|Tsodyks 98]]), the STD effect is modeled by a normalized variable <math>x</math> (<math>0\leq x \leq1</math>), denoting the fraction of resources that remain available after neurotransmitter depletion. The STF effect is modeled by a utilization parameter <math>u</math>, representing the fraction of available resources ready for use (release probability). Following a spike, (i) <math>u</math> increases due to spike-induced calcium influx to the presynaptic terminal, after which (ii) a fraction <math>u</math> of available resources is consumed to produce the post-synaptic current. Between spikes, <math>u</math> decays back to zero with time constant <math>\tau_f</math> and <math>x</math> recovers to 1 with time constant <math>\tau_d </math>. In summary, the dynamics of STP is given by
 
In the model proposed by Tsodyks and Markram ([[#Tsodyks98|Tsodyks 98]]), the STD effect is modeled by a normalized variable <math>x</math> (<math>0\leq x \leq1</math>), denoting the fraction of resources that remain available after neurotransmitter depletion. The STF effect is modeled by a utilization parameter <math>u</math>, representing the fraction of available resources ready for use (release probability). Following a spike, (i) <math>u</math> increases due to spike-induced calcium influx to the presynaptic terminal, after which (ii) a fraction <math>u</math> of available resources is consumed to produce the post-synaptic current. Between spikes, <math>u</math> decays back to zero with time constant <math>\tau_f</math> and <math>x</math> recovers to 1 with time constant <math>\tau_d </math>. In summary, the dynamics of STP is given by
   −
在 Tsodyks 和 Markram (Tsodyks 98) 提出的模型中,STD 效应由归一化变量 <math>x</math> (<math>0\leq x \leq1</math>),表示在神经递质耗尽后仍然可用的资源比例。 STF 效应由利用率参数 建模,表示可供使用的可用资源的比例(释放概率)。 在一个尖峰之后,(i)由于尖峰诱导的钙流入突触前末端而增加,之后 (ii) 一小部分<math>u</math> 的可用资源被消耗以产生突触后电流。 在尖峰之间,<math>u</math>衰减回零,时间常数为 <math>\tau_f</math>和 <math>x</math>恢复到 1 具有时间常数 <math>\tau_d </math>。 总之,STP 的动态由下式给出
+
在 Tsodyks 和 Markram ([[#Tsodyks98|Tsodyks 98]]) 提出的模型中,STD 效应由归一化变量 <math>x</math> (<math>0\leq x \leq1</math>),表示在神经递质耗尽后仍然可用的资源比例。 STF 效应由利用率参数 建模,表示可供使用的可用资源的比例(释放概率)。 在一个尖峰之后,(i)由于尖峰诱导的钙流入突触前末端而增加,之后 (ii) 一小部分<math>u</math> 的可用资源被消耗以产生突触后电流。 在尖峰之间,<math>u</math>衰减回零,时间常数为 <math>\tau_f</math>和 <math>x</math>恢复到 1 具有时间常数 <math>\tau_d </math>。 总之,STP 的动态由下式给出
    
:<math>\begin{aligned}
 
:<math>\begin{aligned}
第55行: 第55行:  
图 1. (A) 由 Eqs.\ref{model} 和 \ref{current} 给出的 STP 现象学模型。 (B) 由 STD 主导的突触产生的突触后电流。 神经元放电率 [math]\displaystyle{ R=15 }[/math]Hz。 参数 [math]\displaystyle{ A=1 }[/math], [math]\displaystyle{ U=0.45 }[/math], [math]\displaystyle{ \tau_s=20 }[/math]ms, [ math]\displaystyle{ \tau_d=750 }[/math]ms 和 [math]\displaystyle{ \tau_f=50 }[/math]ms。 (C) STF 主导突触的动力学。 参数 [math]\displaystyle{ U=0.15 }[/math]、[math]\displaystyle{ \tau_f=750 }[/math]ms 和 [math]\displaystyle{ \tau_d=50 }[/math] 小姐。
 
图 1. (A) 由 Eqs.\ref{model} 和 \ref{current} 给出的 STP 现象学模型。 (B) 由 STD 主导的突触产生的突触后电流。 神经元放电率 [math]\displaystyle{ R=15 }[/math]Hz。 参数 [math]\displaystyle{ A=1 }[/math], [math]\displaystyle{ U=0.45 }[/math], [math]\displaystyle{ \tau_s=20 }[/math]ms, [ math]\displaystyle{ \tau_d=750 }[/math]ms 和 [math]\displaystyle{ \tau_f=50 }[/math]ms。 (C) STF 主导突触的动力学。 参数 [math]\displaystyle{ U=0.15 }[/math]、[math]\displaystyle{ \tau_f=750 }[/math]ms 和 [math]\displaystyle{ \tau_d=50 }[/math] 小姐。
   −
==对信息传输的影响Effects on information transmission ==
+
==对信息传输的影响Effects on information transmission==
    
Because STP modifies synaptic efficacy based on the history of presynaptic activity, it can alter neural information transmission ([[#Abbott97|Abbott 97]], [[#Tsodyks97|Tsodyks 97]], [[#Fuhrmann02|Fuhrmann 02]], [[#Rotman11|Rotman 11]], [[#Rosenbaum12|Rosenbaum 12]]). In general, an STD-dominated synapse favors information transfer for low firing rates, since high-frequency spikes rapidly deactivate the synapse. An STF-dominated synapse, however, tends to optimize information transfer for high-frequency bursts, which increase the synaptic strength.  
 
Because STP modifies synaptic efficacy based on the history of presynaptic activity, it can alter neural information transmission ([[#Abbott97|Abbott 97]], [[#Tsodyks97|Tsodyks 97]], [[#Fuhrmann02|Fuhrmann 02]], [[#Rotman11|Rotman 11]], [[#Rosenbaum12|Rosenbaum 12]]). In general, an STD-dominated synapse favors information transfer for low firing rates, since high-frequency spikes rapidly deactivate the synapse. An STF-dominated synapse, however, tends to optimize information transfer for high-frequency bursts, which increase the synaptic strength.  
   −
因为 STP 根据突触前活动的历史来修改突触功效,所以它可以改变神经信息传递(Abbott 97、Tsodyks 97、Fuhrmann 02、Rotman 11、Rosenbaum 12)。 一般来说,以 STD 为主的突触有利于低发射率的信息传递,因为高频尖峰会迅速使突触失活。 然而,以 STF 为主的突触倾向于优化高频突发的信息传递,从而增加突触强度。  
+
因为 STP 根据突触前活动的历史来修改突触功效,所以它可以改变神经信息传递 ([[#Abbott97|Abbott 97]], [[#Tsodyks97|Tsodyks 97]], [[#Fuhrmann02|Fuhrmann 02]], [[#Rotman11|Rotman 11]], [[#Rosenbaum12|Rosenbaum 12]])。 一般来说,以 STD 为主的突触有利于低发射率的信息传递,因为高频尖峰会迅速使突触失活。 然而,以 STF 为主的突触倾向于优化高频突发的信息传递,从而增加突触强度。  
    
Firing-rate-dependent transmission via dynamic synapses can be analyzed by examining the transmission of uncorrelated Poisson spike trains from a large neuronal population with global firing rate <math>R(t)</math>. The time evolution for the postsynaptic current <math>I(t)</math> can be obtained by averaging Eq. \ref{model} over different realization of Poisson processes corresponding to different spike trains ([[#Tsodyks98|Tsodyks 98]]):
 
Firing-rate-dependent transmission via dynamic synapses can be analyzed by examining the transmission of uncorrelated Poisson spike trains from a large neuronal population with global firing rate <math>R(t)</math>. The time evolution for the postsynaptic current <math>I(t)</math> can be obtained by averaging Eq. \ref{model} over different realization of Poisson processes corresponding to different spike trains ([[#Tsodyks98|Tsodyks 98]]):
   −
可以通过检查来自具有全局放电率 [math]\displaystyle{ R(t) }[/math] 的大型神经元群体的不相关 Poisson 尖峰序列的传输来分析通过动态突触的放电率依赖性传输。 突触后电流 [math]\displaystyle{ I(t) }[/math] 的时间演化可以通过对等式求平均来获得。 \ref{model} 对应于不同尖峰序列的泊松过程的不同实现(Tsodyks 98):
+
可以通过检查来自具有全局放电率<math>R(t)</math>的大型神经元群体的不相关 Poisson 尖峰序列的传输来分析通过动态突触的放电率依赖性传输。 突触后电流<math>I(t)</math>的时间演化可以通过对等式求平均来获得。 \ref{model} 对应于不同尖峰序列的泊松过程的不同实现([[#Tsodyks98|Tsodyks 98]]):
    
:<math>\begin{aligned}
 
:<math>\begin{aligned}
第115行: 第115行:  
STP can also regulate information transmission in other ways. For instance, STD may contribute to remove auto-correlation in temporal inputs, since temporally proximal spikes tend to magnify the depression effect and hence reduce the output correlation of the post-synaptic potential ([[#Goldman02|Goldman 02]]). On the other hand, STF, whose effect is enlarged by temporally proximal spikes, improves the sensitivity of a post-synaptic neuron to temporally correlated inputs ([[#Mejías08|Mejías 08]], [[#Bourjaily12|Bourjaily 12]]).
 
STP can also regulate information transmission in other ways. For instance, STD may contribute to remove auto-correlation in temporal inputs, since temporally proximal spikes tend to magnify the depression effect and hence reduce the output correlation of the post-synaptic potential ([[#Goldman02|Goldman 02]]). On the other hand, STF, whose effect is enlarged by temporally proximal spikes, improves the sensitivity of a post-synaptic neuron to temporally correlated inputs ([[#Mejías08|Mejías 08]], [[#Bourjaily12|Bourjaily 12]]).
   −
STP 还可以通过其他方式规范信息传输。 例如,STD 可能有助于消除时间输入中的自相关,因为时间近端尖峰倾向于放大抑郁效应,从而降低突触后电位的输出相关性 (Goldman 02)。 另一方面,STF 的效果因时间近端尖峰而扩大,提高了突触后神经元对时间相关输入的敏感性 (Mejías 08, Bourjaily 12)。
+
STP 还可以通过其他方式规范信息传输。 例如,STD 可能有助于消除时间输入中的自相关,因为时间近端尖峰倾向于放大抑郁效应,从而降低突触后电位的输出相关性 ([[#Goldman02|Goldman 02]]) 。 另一方面,STF 的效果因时间近端尖峰而扩大,提高了突触后神经元对时间相关输入的敏感性 ([[#Mejías08|Mejías 08]], [[#Bourjaily12|Bourjaily 12]])。
    
By combining STD and STF, neural information transmission could be further improved. For example, by combining STF-dominated excitatory and STD-dominated inhibitory synapses, the detection of high-frequency epochs by a postsynaptic neuron can be enhanced ([[#Klyachko06|Klyachko 06]]). In a postsynaptic neuron receiving both STD-dominated and STF-dominated inputs, the neural response can show both low- and high-pass filtering properties ([[#Fortune01|Fortune 01]]).
 
By combining STD and STF, neural information transmission could be further improved. For example, by combining STF-dominated excitatory and STD-dominated inhibitory synapses, the detection of high-frequency epochs by a postsynaptic neuron can be enhanced ([[#Klyachko06|Klyachko 06]]). In a postsynaptic neuron receiving both STD-dominated and STF-dominated inputs, the neural response can show both low- and high-pass filtering properties ([[#Fortune01|Fortune 01]]).
   −
通过结合STD和STF,可以进一步改善神经信息传输。 例如,通过结合 STF 主导的兴奋性突触和 STD 主导的抑制性突触,可以增强突触后神经元对高频时期的检测 (Klyachko 06)。 在同时接收 STD 主导和 STF 主导输入的突触后神经元中,神经反应可以显示低通和高通滤波特性([[#Fortune01|Fortune 01]])。
+
通过结合STD和STF,可以进一步改善神经信息传输。 例如,通过结合 STF 主导的兴奋性突触和 STD 主导的抑制性突触,可以增强突触后神经元对高频时期的检测 ([[#Klyachko06|Klyachko 06]])。 在同时接收 STD 主导和 STF 主导输入的突触后神经元中,神经反应可以显示低通和高通滤波特性([[#Fortune01|Fortune 01]])。
    
===Gain control===
 
===Gain control===
第142行: 第142行:  
除了前馈和反馈传输之外,神经回路还会在神经元之间产生循环交互。由于 STP 包含在循环交互中,网络动力学表现出许多新的有趣行为,这些行为不会出现在纯静态突触中。因此,这些新的动态特性可以实现 STP 介导的网络计算。
 
除了前馈和反馈传输之外,神经回路还会在神经元之间产生循环交互。由于 STP 包含在循环交互中,网络动力学表现出许多新的有趣行为,这些行为不会出现在纯静态突触中。因此,这些新的动态特性可以实现 STP 介导的网络计算。
   −
===Prolongation of neural responses to transient inputs===
+
=== Prolongation of neural responses to transient inputs===
    
Since STP has a much longer time scale than that of single neuron dynamics (the latter is typically in the time order of <math>10-20</math> milliseconds), a new feature STP can bring to the network dynamics is prolongation of neural responses to a transient input. This stimulus-induced residual activity therefore holds a memory trace of the input, lasting up to several hundred milliseconds in a large-size network, and can serve as a buffer for information processing. For example, it has been<math>10-20</math> shown that STD-mediated residual activity can cause a neural system to discriminate between rhythmic inputs of different periods ([[#Karmorkar07|Karmorkar 07]]). STP also plays an important role in a general computation framework called a reservoir network. In this framework, STP, together with other dynamical elements of a large-size network, effectively map the input features from a low-dimensional space to the high-dimensional state space of the network that includes both active (neural) and hidden (synaptic) components, so that the input information can be more easily read out ([[#Buonomano09|Buonomano 09]]). In a recent development it was proposed that STF-enhanced synapses themselves can hold the memory trace of an input without recruiting persistent firing of neurons, potentially providing the most economical and robust way to implement working memory ([[#Mongillo08|Mongillo 08]]).
 
Since STP has a much longer time scale than that of single neuron dynamics (the latter is typically in the time order of <math>10-20</math> milliseconds), a new feature STP can bring to the network dynamics is prolongation of neural responses to a transient input. This stimulus-induced residual activity therefore holds a memory trace of the input, lasting up to several hundred milliseconds in a large-size network, and can serve as a buffer for information processing. For example, it has been<math>10-20</math> shown that STD-mediated residual activity can cause a neural system to discriminate between rhythmic inputs of different periods ([[#Karmorkar07|Karmorkar 07]]). STP also plays an important role in a general computation framework called a reservoir network. In this framework, STP, together with other dynamical elements of a large-size network, effectively map the input features from a low-dimensional space to the high-dimensional state space of the network that includes both active (neural) and hidden (synaptic) components, so that the input information can be more easily read out ([[#Buonomano09|Buonomano 09]]). In a recent development it was proposed that STF-enhanced synapses themselves can hold the memory trace of an input without recruiting persistent firing of neurons, potentially providing the most economical and robust way to implement working memory ([[#Mongillo08|Mongillo 08]]).
第193行: 第193行:  
图 3. (A,B) 以 STD 为主的网络响应外部兴奋性脉冲而产生的人口峰值。当脉冲的呈现率低 (A) 时,网络对它们中的每一个做出响应。对于更高的呈现率 (B),网络仅响应一小部分输入。改编自([[#Loebel02|Loebel 02]])。 (C) STD 在 CANN 中产生的行波。 (D) 具有 STD 的 CANN 的预期跟踪行为。
 
图 3. (A,B) 以 STD 为主的网络响应外部兴奋性脉冲而产生的人口峰值。当脉冲的呈现率低 (A) 时,网络对它们中的每一个做出响应。对于更高的呈现率 (B),网络仅响应一小部分输入。改编自([[#Loebel02|Loebel 02]])。 (C) STD 在 CANN 中产生的行波。 (D) 具有 STD 的 CANN 的预期跟踪行为。
   −
==Appendix A: Derivation of a temporal filter for short-term depression==
+
== Appendix A: Derivation of a temporal filter for short-term depression==
    
We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>):
 
We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>):
104

个编辑

导航菜单