以<math>{C}_{tt}^{\prime} </math>作为其元素,我们可以得到一个<math>M×M</math>的微观态相关矩阵:<math>\begin{eqnarray}{\boldsymbol{C}}={C}_{0}{{\boldsymbol{A}}}^{{\rm{T}}}\cdot {\boldsymbol{A}}\end{eqnarray}</math>,其轨迹<math>Tr\boldsymbol{C}={\sum }_{t=1}^{M}{C}_{tt}={C}_{0}</math> 。相关矩阵<math>\boldsymbol{C}</math>有<math>M</math>个特征向量<math>V_J</math>,其中<math>J = 1, 2, ⋯ , M</math>,我们可以用它们组成一个<math>M×M</math>的单元矩阵 | 以<math>{C}_{tt}^{\prime} </math>作为其元素,我们可以得到一个<math>M×M</math>的微观态相关矩阵:<math>\begin{eqnarray}{\boldsymbol{C}}={C}_{0}{{\boldsymbol{A}}}^{{\rm{T}}}\cdot {\boldsymbol{A}}\end{eqnarray}</math>,其轨迹<math>Tr\boldsymbol{C}={\sum }_{t=1}^{M}{C}_{tt}={C}_{0}</math> 。相关矩阵<math>\boldsymbol{C}</math>有<math>M</math>个特征向量<math>V_J</math>,其中<math>J = 1, 2, ⋯ , M</math>,我们可以用它们组成一个<math>M×M</math>的单元矩阵 |