更改

跳到导航 跳到搜索
添加44字节 、 2023年7月17日 (一) 20:07
无编辑摘要
第234行: 第234行:  
下为一些链接能够更好的了解因果涌现的相关信息:  
 
下为一些链接能够更好的了解因果涌现的相关信息:  
   −
==== 因果涌现读书会: ====
+
==== 因果涌现读书会 ====
 
*[https://campus.swarma.org/course/3110 因果涌现读书会简介]
 
*[https://campus.swarma.org/course/3110 因果涌现读书会简介]
 
[[文件:读书会通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。.jpg|缩略图|346x346px|读书会通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。]]分享近期发展起来的一些理论与工具,包括因果涌现理论、机器学习驱动的重整化技术,以及自指动力学正在发展一套跨尺度的分析框架等。
 
[[文件:读书会通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。.jpg|缩略图|346x346px|读书会通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。]]分享近期发展起来的一些理论与工具,包括因果涌现理论、机器学习驱动的重整化技术,以及自指动力学正在发展一套跨尺度的分析框架等。
第246行: 第246行:  
读书会通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。
 
读书会通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。
   −
==== 文章推荐: ====
+
==== 文章推荐 ====
*[https://www.mdpi.com/1099-4300/25/1/26 Neural Information Squeezer for Causal Emergence]
+
*Zhang, J.; Liu, K. [https://www.mdpi.com/1099-4300/25/1/26 Neural Information Squeezer for Causal Emergence]. ''Entropy'' 2023, ''25'', 26.
    
文章提出了一种名为 "神经信息挤压器"(Neural Information Squeezer)的通用机器学习框架,以自动提取有效的粗粒化策略和宏观动态,并直接从时间序列数据中识别因果涌现。
 
文章提出了一种名为 "神经信息挤压器"(Neural Information Squeezer)的通用机器学习框架,以自动提取有效的粗粒化策略和宏观动态,并直接从时间序列数据中识别因果涌现。
138

个编辑

导航菜单