更改

跳到导航 跳到搜索
第73行: 第73行:     
====Hoel的粗粒化方法====
 
====Hoel的粗粒化方法====
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,右图是对该理论框架的一个抽象,其中,横坐标表示时间尺度,纵坐标表示空间尺度。该框架可以看成是一个多层级的系统,存在微观和宏观两种状态。由于微观态往往具有很大的噪音,导致微观动力学的因果性比较弱,所以如果能对微观态进行合适的粗粒化得到噪音更小的宏观态,从而能使得宏观动力学的因果性更强。此外,因果涌现现象的发生意味着,当粗粒化微观状态时,从当前状态传递到下一状态的有效信息量会增加。[[文件:因果涌现理论抽象框架.png|因果涌现理论抽象框架|alt=因果涌现理论抽象框架|居中|368x368像素|缩略图]]作者借鉴了整合信息的量化方法<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>,提出一种因果效应度量指标有效信息(<math> EI </math>)来量化一个马尔可夫动力学的因果性强弱,该指标反应一个特定的状态如何有效地影响系统的未来状态,是系统动力学的内禀属性。具体来说,使用干预操作对上一时刻的状态做干预,然后计算干预分布与在干预的情况下经过动力学的下一时刻分布两者之间的互信息作为因果效应的度量指标, <math> EI </math>的计算公式如下所示:
+
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,右图是对该理论框架的一个抽象,其中,横坐标表示时间尺度,纵坐标表示空间尺度。该框架可以看成是一个多层级的系统,存在微观和宏观两种状态。由于微观态往往具有很大的噪音,导致微观动力学的因果性比较弱,所以如果能对微观态进行合适的粗粒化得到噪音更小的宏观态,从而能使得宏观动力学的因果性更强。此外,因果涌现现象的发生意味着,当粗粒化微观状态时,从当前状态传递到下一状态的有效信息量会增加。[[文件:因果涌现理论框架.png|因果涌现理论抽象框架|alt=因果涌现理论抽象框架|居中|368x368像素|缩略图]]作者借鉴了整合信息的量化方法<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>,提出一种因果效应度量指标有效信息(<math> EI </math>)来量化一个马尔可夫动力学的因果性强弱,该指标反应一个特定的状态如何有效地影响系统的未来状态,是系统动力学的内禀属性。具体来说,使用干预操作对上一时刻的状态做干预,然后计算干预分布与在干预的情况下经过动力学的下一时刻分布两者之间的互信息作为因果效应的度量指标, <math> EI </math>的计算公式如下所示:
    
<math>EI\left(S\right)=MI\left(I_D;E_D\right)=\sum_{i\in I_D}\ p\left(do\left(s_{t-1}=i\right)\right)\sum_{s_t\in E_D}{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}\log_2{\frac{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}{p\left(s_t\right)}}\ </math>
 
<math>EI\left(S\right)=MI\left(I_D;E_D\right)=\sum_{i\in I_D}\ p\left(do\left(s_{t-1}=i\right)\right)\sum_{s_t\in E_D}{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}\log_2{\frac{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}{p\left(s_t\right)}}\ </math>
138

个编辑

导航菜单