第183行: |
第183行: |
| (i) 若存在 <math>X</math> 使 <math>\det(\partial_{X' } \mu(X)) \neq 0</math> ,则 <math>EI</math> 由如下式子导出: | | (i) 若存在 <math>X</math> 使 <math>\det(\partial_{X' } \mu(X)) \neq 0</math> ,则 <math>EI</math> 由如下式子导出: |
| | | |
− | <math>\begin{multline} | + | <math>EI_L(\mu) = I(do(X \sim \mathcal{U}([-L,L]^n;\mathcal{Y}) \approx - \frac{m+m \ln(2\pi)+\Sigma_{i=1}^m \sigma_i^2}{2}+n \ln (2L)+ \mathbb{E}_{X \sim \mathcal{U}[-L,L]^n}(\ln | \det(\partial_{X' }\mu(X))|) \tag{16}</math> |
− | EI_L(\mu) = I(do(X \sim \mathcal{U}([-L,L]^n;\mathcal{Y}) \approx - \frac{m+m \ln(2\pi)+\Sigma_{i=1}^m \sigma_i^2}{2} \\ | |
− | +n \ln (2L)+ \mathbb{E}_{X \sim \mathcal{U}[-L,L]^n}(\ln | \det(\partial_{X' }\mu(X))|) | |
− | \end{multline}\tag{16}</math>
| |
| | | |
| 其中 <math>\mathcal{U}([-L,L]^n)</math> 表示 <math>[-L,L]^n</math> 上的均匀分布,<math>|\cdot|</math> 表示绝对值,<math>\det</math> 表示行列式。 | | 其中 <math>\mathcal{U}([-L,L]^n)</math> 表示 <math>[-L,L]^n</math> 上的均匀分布,<math>|\cdot|</math> 表示绝对值,<math>\det</math> 表示行列式。 |
第203行: |
第200行: |
| 此时如果动态 <math>f</math> 连续且可被看作条件高斯分布,则根据 <math>EI</math> 的定义(式 16),维度平均 <math>EI</math> 可以计算为(<math>m = n</math>): | | 此时如果动态 <math>f</math> 连续且可被看作条件高斯分布,则根据 <math>EI</math> 的定义(式 16),维度平均 <math>EI</math> 可以计算为(<math>m = n</math>): |
| | | |
− | <math> \begin{multline} | + | <math>dEI_L(f)= -\frac{1+\ln(2\pi)+\Sigma_{i=1}^n \sigma_i^2/n}{2}+\ln(2L) + \frac{1}{n}\mathbb{E}_{X \sim \mathcal{U}([-L,L]^n)}(\ln | \det(\partial_{X'}f(X))|) \tag{18}</math> |
− | dEI_L(f)= -\frac{1+\ln(2\pi)+\Sigma_{i=1}^n \sigma_i^2/n}{2}+\ln(2L)\\ + \frac{1}{n}\mathbb{E}_{X \sim \mathcal{U}([-L,L]^n)}(\ln | \det(\partial_{X'}f(X))|) | |
− | \end{multline}\tag{18}</math>
| |
| | | |
| 式 18 中与维度 <math>n</math> 相关的所有项都已被消除。但是,等式中仍然存在 <math>L</math>,当 <math>L</math> 很大时可能导致 <math>EI</math> 发散。 | | 式 18 中与维度 <math>n</math> 相关的所有项都已被消除。但是,等式中仍然存在 <math>L</math>,当 <math>L</math> 很大时可能导致 <math>EI</math> 发散。 |
第220行: |
第215行: |
| 因此,如果动态 <math>f_M</math> 和 <math>f_m</math> 连续且可以被视为条件高斯分布,则根据定义 7 和公式 (18),维度平均因果涌现符合如下公式: | | 因此,如果动态 <math>f_M</math> 和 <math>f_m</math> 连续且可以被视为条件高斯分布,则根据定义 7 和公式 (18),维度平均因果涌现符合如下公式: |
| | | |
− | <math> \begin{multline} | + | <math> dCE(f_M,f_m)=\left(\frac{1}{n_M} \mathbb{E}_{X_M} \ln |\det\partial_{X_M}f_M| \right) - \left(\frac{1}{n_M}\sum_{i=1}^{n_M} \ln \sigma_{i,M}^2 - \frac{1}{n_m} \sum_{i=1}^{n_m} \ln \sigma_{i,m}^2 \right) \tag{20}</math> |
− | dCE(f_M,f_m)=\left(\frac{1}{n_M} \mathbb{E}_{X_M} \ln |\det\partial_{X_M}f_M| \right) \\ - \left(\frac{1}{n_M}\sum_{i=1}^{n_M} \ln \sigma_{i,M}^2 - \frac{1}{n_m} \sum_{i=1}^{n_m} \ln \sigma_{i,m}^2 \right) | |
− | \end{multline} \tag{20}</math>
| |
| | | |
| 在式 20 中,<math>n</math> 维和 <math>L</math> 维的影响已被完全消除,结果只受方差的相对值和雅可比矩阵行列式的对数值的影响。数值计算中将主要使用式 20。Eff 因受 <math>L</math> 影响而弃用。 | | 在式 20 中,<math>n</math> 维和 <math>L</math> 维的影响已被完全消除,结果只受方差的相对值和雅可比矩阵行列式的对数值的影响。数值计算中将主要使用式 20。Eff 因受 <math>L</math> 影响而弃用。 |
第231行: |
第224行: |
| (i) 若存在 <math>X</math> 使 <math>\det(\partial_{X' } \mu(X)) \neq 0</math> ,则 <math>EI</math> 由如下式子导出: | | (i) 若存在 <math>X</math> 使 <math>\det(\partial_{X' } \mu(X)) \neq 0</math> ,则 <math>EI</math> 由如下式子导出: |
| | | |
− | <math>\begin{multline} | + | <math>EI_L(\mu) = I(do(X \sim \mathcal{U}([-L,L]^n;\mathcal{Y}) \approx - \frac{m+m \ln(2\pi)+\Sigma_{i=1}^m \sigma_i^2}{2} +n \ln (2L)+ \mathbb{E}_{X \sim \mathcal{U}[-L,L]^n}(\ln | \det(\partial_{X'}\mu(X))|) \tag{16}</math> |
− | EI_L(\mu) = I(do(X \sim \mathcal{U}([-L,L]^n;\mathcal{Y}) \approx - \frac{m+m \ln(2\pi)+\Sigma_{i=1}^m \sigma_i^2}{2} \\ | |
− | +n \ln (2L)+ \mathbb{E}_{X \sim \mathcal{U}[-L,L]^n}(\ln | \det(\partial_{X'}\mu(X))|) | |
− | \end{multline}\tag{16}</math>
| |
| | | |
| 其中 <math>\mathcal{U}([-L,L]^n)</math> 表示 <math>[-L,L]^n</math> 上的均匀分布,<math>|\cdot|</math> 表示绝对值,<math>\det</math> 表示行列式。 | | 其中 <math>\mathcal{U}([-L,L]^n)</math> 表示 <math>[-L,L]^n</math> 上的均匀分布,<math>|\cdot|</math> 表示绝对值,<math>\det</math> 表示行列式。 |
第251行: |
第241行: |
| 此时如果动态 <math>f</math> 连续且可被看作条件高斯分布,则根据 <math>EI</math> 的定义(式 16),维度平均 <math>EI</math> 可以计算为(<math>m = n</math>): | | 此时如果动态 <math>f</math> 连续且可被看作条件高斯分布,则根据 <math>EI</math> 的定义(式 16),维度平均 <math>EI</math> 可以计算为(<math>m = n</math>): |
| | | |
− | <math> \begin{multline} | + | <math>dEI_L(f)= -\frac{1+\ln(2\pi)+\Sigma_{i=1}^n \sigma_i^2/n}{2}+\ln(2L) + \frac{1}{n}\mathbb{E}_{X \sim \mathcal{U}([-L,L]^n)}(\ln | \det(\partial_{X'}f(X))|) \tag{18}</math> |
− | dEI_L(f)= -\frac{1+\ln(2\pi)+\Sigma_{i=1}^n \sigma_i^2/n}{2}+\ln(2L)\\ + \frac{1}{n}\mathbb{E}_{X \sim \mathcal{U}([-L,L]^n)}(\ln | \det(\partial_{X'}f(X))|) | |
− | \end{multline}\tag{18}</math>
| |
| | | |
| 式 18 中与维度 <math>n</math> 相关的所有项都已被消除。但是,等式中仍然存在 <math>L</math>,当 <math>L</math> 很大时可能导致 <math>EI</math> 发散。 | | 式 18 中与维度 <math>n</math> 相关的所有项都已被消除。但是,等式中仍然存在 <math>L</math>,当 <math>L</math> 很大时可能导致 <math>EI</math> 发散。 |
第268行: |
第256行: |
| 因此,如果动态 <math>f_M</math> 和 <math>f_m</math> 连续且可以被视为条件高斯分布,则根据定义 7 和公式 (18),维度平均因果涌现符合如下公式: | | 因此,如果动态 <math>f_M</math> 和 <math>f_m</math> 连续且可以被视为条件高斯分布,则根据定义 7 和公式 (18),维度平均因果涌现符合如下公式: |
| | | |
− | <math> \begin{multline} | + | <math>dCE(f_M,f_m)=\left(\frac{1}{n_M} \mathbb{E}_{X_M} \ln |\det\partial_{X_M}f_M| \right) - \left(\frac{1}{n_M}\sum_{i=1}^{n_M} \ln \sigma_{i,M}^2 - \frac{1}{n_m} \sum_{i=1}^{n_m} \ln \sigma_{i,m}^2 \right) \tag{20}</math> |
− | dCE(f_M,f_m)=\left(\frac{1}{n_M} \mathbb{E}_{X_M} \ln |\det\partial_{X_M}f_M| \right) \\ - \left(\frac{1}{n_M}\sum_{i=1}^{n_M} \ln \sigma_{i,M}^2 - \frac{1}{n_m} \sum_{i=1}^{n_m} \ln \sigma_{i,m}^2 \right) | |
− | \end{multline} \tag{20}</math>
| |
| | | |
| 在式 20 中,<math>n</math> 维和 <math>L</math> 维的影响已被完全消除,结果只受方差的相对值和雅可比矩阵行列式的对数值的影响。数值计算中将主要使用式 20。Eff 因受 <math>L</math> 影响而弃用。 | | 在式 20 中,<math>n</math> 维和 <math>L</math> 维的影响已被完全消除,结果只受方差的相对值和雅可比矩阵行列式的对数值的影响。数值计算中将主要使用式 20。Eff 因受 <math>L</math> 影响而弃用。 |
第364行: |
第350行: |
| \tilde{\mathbf{x}}_2 = \mathbf{x} - \xi \\ | | \tilde{\mathbf{x}}_2 = \mathbf{x} - \xi \\ |
| \end{cases} \tag{27}</math> | | \end{cases} \tag{27}</math> |
| + | |
| 其中<math>\xi \sim \mathcal{N}(0,\sigma)</math> 是符合二维高斯分布的随机数值,<math>\sigma</math> 是位置与速度标准差的向量。将状态<math>\mathbf{x}</math>理解为潜在宏观状态,测量微状态<math>\tilde{\mathbf{x}_1}</math>,<math>\tilde{\mathbf{x}_2}</math>。 NIS从测量值中恢复潜在的宏观X。 | | 其中<math>\xi \sim \mathcal{N}(0,\sigma)</math> 是符合二维高斯分布的随机数值,<math>\sigma</math> 是位置与速度标准差的向量。将状态<math>\mathbf{x}</math>理解为潜在宏观状态,测量微状态<math>\tilde{\mathbf{x}_1}</math>,<math>\tilde{\mathbf{x}_2}</math>。 NIS从测量值中恢复潜在的宏观X。 |
| [[文件:NIS Fig 4.png|居中|缩略图|'''图4.''' 具有测量噪声的简单弹簧振荡器的实验结果。]] | | [[文件:NIS Fig 4.png|居中|缩略图|'''图4.''' 具有测量噪声的简单弹簧振荡器的实验结果。]] |