第337行: |
第337行: |
| ===带测量噪声的弹簧振荡器=== | | ===带测量噪声的弹簧振荡器=== |
| 振荡器符合如下动力学方程组: | | 振荡器符合如下动力学方程组: |
| + | |
| <math>\begin{cases} | | <math>\begin{cases} |
| dz/dt = v \\ | | dz/dt = v \\ |
第354行: |
第355行: |
| [[文件:NIS Fig 4.png|居中|缩略图|'''图4.''' 具有测量噪声的简单弹簧振荡器的实验结果。]] | | [[文件:NIS Fig 4.png|居中|缩略图|'''图4.''' 具有测量噪声的简单弹簧振荡器的实验结果。]] |
| 根据式27,影响状态测量的噪音可以通过叠加两通道的数据消除。因此,如果在NIS中输入两个测量值的宏观状态,则可简单地获得正确的动力学。使用Euler方法(<math>dt = 1</math>)采样<math>10,000</math>批批次的数据,并在每个批次中生成100个随机初始状态并执行一个步骤动态,求得下一个时间步长中的状态。使用这些数据来训练神经网络,同时使用相同的数据集来训练具有相同数量参数的普通前馈神经网络以作比较。 结果如图4所示。 | | 根据式27,影响状态测量的噪音可以通过叠加两通道的数据消除。因此,如果在NIS中输入两个测量值的宏观状态,则可简单地获得正确的动力学。使用Euler方法(<math>dt = 1</math>)采样<math>10,000</math>批批次的数据,并在每个批次中生成100个随机初始状态并执行一个步骤动态,求得下一个时间步长中的状态。使用这些数据来训练神经网络,同时使用相同的数据集来训练具有相同数量参数的普通前馈神经网络以作比较。 结果如图4所示。 |
| + | [[文件:NIS Fig 5.png|居中|缩略图|'''图5.''' 变量间的各类互信息随着训练迭代次数而发生变化。]] |
| | | |
| | | |
第374行: |
第376行: |
| 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ | | 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ |
| \end{pmatrix} \tag{28}</math> | | \end{pmatrix} \tag{28}</math> |
− | | + | [[文件:NIS Fig 6.png|居中|缩略图|'''图6.''' 简单马尔可夫链的实验结果。]] |
| 该系统有 8 个状态,其中 7之间 个可以相互转移,最后一个状态是独立的。使用一个 one-hot 向量编码状态(例如状态2 将表示为 (0,1,0,0,0,0,0,0))。对初始状态进行 50,000 个批次的采样以生成数据,然后将 one-hot 向量输入 NIS 框架,经过 50,000 个迭代轮次的训练后可以得到一个有效的模型。结果如图 6 所示。 | | 该系统有 8 个状态,其中 7之间 个可以相互转移,最后一个状态是独立的。使用一个 one-hot 向量编码状态(例如状态2 将表示为 (0,1,0,0,0,0,0,0))。对初始状态进行 50,000 个批次的采样以生成数据,然后将 one-hot 向量输入 NIS 框架,经过 50,000 个迭代轮次的训练后可以得到一个有效的模型。结果如图 6 所示。 |
− | ![[Pasted image 20240520134811.png]]
| |
− | '''图6.''' 简单马尔可夫链的实验结果。
| |
| | | |
| 通过系统地搜索不同的 <math>q</math> 可以发现维度平均因果涌现(dCE)在 <math>q=1</math> 处达到峰值(图 6a)。可以通过图 6b 可视化在最佳尺度上的粗粒化策略,其中 <math>x</math> 坐标是不同状态的十进制编码,<math>y</math> 坐标表示宏观状态的编码。粗粒化映射成功地将前七个状态分类为一个宏观状态,同时保持最后一个状态不变。这种学习到的粗粒化策略与文献 [6] 中的示例相同。 | | 通过系统地搜索不同的 <math>q</math> 可以发现维度平均因果涌现(dCE)在 <math>q=1</math> 处达到峰值(图 6a)。可以通过图 6b 可视化在最佳尺度上的粗粒化策略,其中 <math>x</math> 坐标是不同状态的十进制编码,<math>y</math> 坐标表示宏观状态的编码。粗粒化映射成功地将前七个状态分类为一个宏观状态,同时保持最后一个状态不变。这种学习到的粗粒化策略与文献 [6] 中的示例相同。 |
第384行: |
第384行: |
| | | |
| ===简单布尔网络=== | | ===简单布尔网络=== |
| + | [[文件:NIS Fig 7.png|居中|缩略图|'''图7.''' 布尔网络样例(左)及其原理(右)。]] |
| 布尔网络是离散动力系统的典型例子,其中每个节点有两种可能的状态(0 或 1),且节点状态受其相邻节点状态的影响。该网络的微观机制如下:图 7 展示了一个包含四个节点的布尔网络示例,每个节点的状态受到其相邻节点状态组合的概率影响,具体概率见图 7 中的表格。将所有节点的机制结合后,可以得到一个具有 <math>2^4 = 16</math> 个状态的大型马尔可夫转移矩阵。 | | 布尔网络是离散动力系统的典型例子,其中每个节点有两种可能的状态(0 或 1),且节点状态受其相邻节点状态的影响。该网络的微观机制如下:图 7 展示了一个包含四个节点的布尔网络示例,每个节点的状态受到其相邻节点状态组合的概率影响,具体概率见图 7 中的表格。将所有节点的机制结合后,可以得到一个具有 <math>2^4 = 16</math> 个状态的大型马尔可夫转移矩阵。 |
− | ![[Pasted image 20240520145306.png]]
| + | [[文件:NIS Fig 8.png|居中|缩略图|'''图8.''' 布尔网络的实验结果。]] |
− | '''图7.''' 布尔网络样例(左)及其原理(右)。
| |
− | | |
| 通过对整个网络进行 50,000 次状态转换的采样(每次采样包含 100 个从可能状态空间均匀随机采样的不同初始条件),将这些数据输入 NIS 模型。通过系统搜索不同的 <math>q</math> 值,发现维度平均因果涌现峰值出现在 q = 1 处(图 8a)。可视化结果显示出粗粒化策略(图 8b),其中 <math>x</math> 坐标是微观状态的十进制编码,<math>y</math> 坐标表示宏观状态的编码。数据点根据其 <math>y</math> 值可以清晰地分为四个簇,这表明 NIS 网络发现了四个离散的宏观状态。与参考文献 [5] 中的示例相似,16 个微观状态与四个宏观状态之间存在一一对应关系。然而,NIS 算法在处理此问题时并不知道任何先验信息,包括节点分组方法、粗粒化策略和动态信息。这个示例验证了信息瓶颈理论与信道互信息之间的关系(图 8c, d)。 | | 通过对整个网络进行 50,000 次状态转换的采样(每次采样包含 100 个从可能状态空间均匀随机采样的不同初始条件),将这些数据输入 NIS 模型。通过系统搜索不同的 <math>q</math> 值,发现维度平均因果涌现峰值出现在 q = 1 处(图 8a)。可视化结果显示出粗粒化策略(图 8b),其中 <math>x</math> 坐标是微观状态的十进制编码,<math>y</math> 坐标表示宏观状态的编码。数据点根据其 <math>y</math> 值可以清晰地分为四个簇,这表明 NIS 网络发现了四个离散的宏观状态。与参考文献 [5] 中的示例相似,16 个微观状态与四个宏观状态之间存在一一对应关系。然而,NIS 算法在处理此问题时并不知道任何先验信息,包括节点分组方法、粗粒化策略和动态信息。这个示例验证了信息瓶颈理论与信道互信息之间的关系(图 8c, d)。 |
− | ![[Pasted image 20240520150135.png]]
| |
− | '''图8.''' 布尔网络的实验结果。
| |
| | | |
| | | |