更改

跳到导航 跳到搜索
添加27字节 、 2024年6月6日 (星期四)
第10行: 第10行:  
到了2022年,为了解决一般[[前馈神经网络]]的EI计算问题,[[张江]]与[[刘凯威]]又将[[因果几何]]中的连续变量的EI计算方法的方差限制去掉,探讨了EI的更一般形式<ref>{{cite journal|title=Neural Information Squeezer for Causal Emergence|first1=Jiang|last1=Zhang|first2=Kaiwei|last2=Liu|journal=Entropy|year=2022|volume=25|issue=1|page=26|url=https://api.semanticscholar.org/CorpusID:246275672}}</ref>。然而,这种扩充仍然存在着一个缺陷,由于实数域上变量的均匀分布严格讲是定义在无穷大空间上的,为了避免遭遇无穷大,EI的计算中就会带着一个参数[math]L[/math],表示均匀分布的区间范围。为了避免这个缺陷,也为了在不同[[粗粒化]]程度上比较EI,作者们便提出了[[维度平均EI]]的概念,并发现由[[维度平均EI]]定义的[[因果涌现度量]]是一个仅与[[神经网络]]的[[雅可比矩阵]]的行列式对数值期望与两个比较维度的[[随机变量方差]]有关的量,而与其它参量,如[math]L[/math]无关,而且,[[维度平均EI]]也可以看作是一种[[归一化的EI]],即Eff。
 
到了2022年,为了解决一般[[前馈神经网络]]的EI计算问题,[[张江]]与[[刘凯威]]又将[[因果几何]]中的连续变量的EI计算方法的方差限制去掉,探讨了EI的更一般形式<ref>{{cite journal|title=Neural Information Squeezer for Causal Emergence|first1=Jiang|last1=Zhang|first2=Kaiwei|last2=Liu|journal=Entropy|year=2022|volume=25|issue=1|page=26|url=https://api.semanticscholar.org/CorpusID:246275672}}</ref>。然而,这种扩充仍然存在着一个缺陷,由于实数域上变量的均匀分布严格讲是定义在无穷大空间上的,为了避免遭遇无穷大,EI的计算中就会带着一个参数[math]L[/math],表示均匀分布的区间范围。为了避免这个缺陷,也为了在不同[[粗粒化]]程度上比较EI,作者们便提出了[[维度平均EI]]的概念,并发现由[[维度平均EI]]定义的[[因果涌现度量]]是一个仅与[[神经网络]]的[[雅可比矩阵]]的行列式对数值期望与两个比较维度的[[随机变量方差]]有关的量,而与其它参量,如[math]L[/math]无关,而且,[[维度平均EI]]也可以看作是一种[[归一化的EI]],即Eff。
   −
本质上讲,EI仅仅与一个[[马尔科夫动力系统]]的[[动力学]]——也就是有关[[马尔科夫状态转移矩阵]]有关,而与状态变量的分布无关,然而,这一点在之前的文章中并没有被指出或刻意强调。在2024年的[[袁冰]]等人的综述文章,作者们进一步强调了这一点,并给出了EI仅依赖于[[马尔科夫状态转移矩阵]]的显式形式<ref>{{cite journal|last1=Yuan|first1=Bing|last2=Zhang|first2=Jiang|last3=Lyu|first3=Aobo|last4=Wu|first4=Jiaying|last5=Wang|first5=Zhipeng|last6=Yang|first6=Mingzhe|last7=Liu|first7=Kaiwei|last8=Mou|first8=Muyun|last9=Cui|first9=Peng|year=2024|title=Emergence and Causality in Complex Systems: A Survey of Causal Emergence and Related Quantitative Studies|journal=Entropy|volume=26|issue=2|page=108|url=https://doi.org/10.3390/e26020108}}</ref>。[[张江]]等人在最新的讨论[[动力学可逆性]]与[[因果涌现]]的最新文章中,又指出EI实际上是对底层[[马尔科夫状态转移矩阵]]的[[可逆性]]的一种刻画,于是尝试直接刻画这种[[马尔科夫链的动力学可逆性]]以替代EI<ref>{{cite journal|author1=Jiang Zhang|author2=Ruyi Tao|author3=Keng Hou Leong|author4=Mingzhe Yang|author5=Bing Yuan|year=2024|title=Dynamical reversibility and a new theory of causal emergence|url=https://arxiv.org/abs/2402.15054}}</ref>。
+
本质上讲,EI仅仅与一个[[马尔科夫动力系统]]的[[动力学]]——也就是有关[[马尔科夫状态转移矩阵]]有关,而与状态变量的分布无关,然而,这一点在之前的文章中并没有被指出或刻意强调。在2024年的[[袁冰]]等人的综述文章,作者们进一步强调了这一点,并给出了EI仅依赖于[[马尔科夫状态转移矩阵]]的显式形式<ref>{{cite journal|last1=Yuan|first1=Bing|last2=Zhang|first2=Jiang|last3=Lyu|first3=Aobo|last4=Wu|first4=Jiaying|last5=Wang|first5=Zhipeng|last6=Yang|first6=Mingzhe|last7=Liu|first7=Kaiwei|last8=Mou|first8=Muyun|last9=Cui|first9=Peng|year=2024|title=Emergence and Causality in Complex Systems: A Survey of Causal Emergence and Related Quantitative Studies|journal=Entropy|volume=26|issue=2|page=108|url=https://doi.org/10.3390/e26020108}}</ref>。[[张江]]等人在最新的讨论[[动力学可逆性]]与[[因果涌现]]的最新文章中,又指出EI实际上是对底层[[马尔科夫状态转移矩阵]]的[[可逆性]]的一种刻画,于是尝试直接刻画这种[[马尔科夫链的动力学可逆性]]以替代EI<ref name="zhang_reversibility">{{cite journal|author1=Jiang Zhang|author2=Ruyi Tao|author3=Keng Hou Leong|author4=Mingzhe Yang|author5=Bing Yuan|year=2024|title=Dynamical reversibility and a new theory of causal emergence|url=https://arxiv.org/abs/2402.15054}}</ref>。
    
=简介=
 
=简介=
786

个编辑

导航菜单