到了2022年,为了解决一般[[前馈神经网络]]的EI计算问题,[[张江]]与[[刘凯威]]又将[[因果几何]]中的连续变量的EI计算方法的方差限制去掉,探讨了EI的更一般形式<ref>{{cite journal|title=Neural Information Squeezer for Causal Emergence|first1=Jiang|last1=Zhang|first2=Kaiwei|last2=Liu|journal=Entropy|year=2022|volume=25|issue=1|page=26|url=https://api.semanticscholar.org/CorpusID:246275672}}</ref>。然而,这种扩充仍然存在着一个缺陷,由于实数域上变量的均匀分布严格讲是定义在无穷大空间上的,为了避免遭遇无穷大,EI的计算中就会带着一个参数[math]L[/math],表示均匀分布的区间范围。为了避免这个缺陷,也为了在不同[[粗粒化]]程度上比较EI,作者们便提出了[[维度平均EI]]的概念,并发现由[[维度平均EI]]定义的[[因果涌现度量]]是一个仅与[[神经网络]]的[[雅可比矩阵]]的行列式对数值期望与两个比较维度的[[随机变量方差]]有关的量,而与其它参量,如[math]L[/math]无关,而且,[[维度平均EI]]也可以看作是一种[[归一化的EI]],即Eff。 | 到了2022年,为了解决一般[[前馈神经网络]]的EI计算问题,[[张江]]与[[刘凯威]]又将[[因果几何]]中的连续变量的EI计算方法的方差限制去掉,探讨了EI的更一般形式<ref>{{cite journal|title=Neural Information Squeezer for Causal Emergence|first1=Jiang|last1=Zhang|first2=Kaiwei|last2=Liu|journal=Entropy|year=2022|volume=25|issue=1|page=26|url=https://api.semanticscholar.org/CorpusID:246275672}}</ref>。然而,这种扩充仍然存在着一个缺陷,由于实数域上变量的均匀分布严格讲是定义在无穷大空间上的,为了避免遭遇无穷大,EI的计算中就会带着一个参数[math]L[/math],表示均匀分布的区间范围。为了避免这个缺陷,也为了在不同[[粗粒化]]程度上比较EI,作者们便提出了[[维度平均EI]]的概念,并发现由[[维度平均EI]]定义的[[因果涌现度量]]是一个仅与[[神经网络]]的[[雅可比矩阵]]的行列式对数值期望与两个比较维度的[[随机变量方差]]有关的量,而与其它参量,如[math]L[/math]无关,而且,[[维度平均EI]]也可以看作是一种[[归一化的EI]],即Eff。 |