更改

跳到导航 跳到搜索
添加1,489字节 、 2024年6月7日 (星期五)
第370行: 第370行:  
==EI的函数性质==
 
==EI的函数性质==
 
由公式{{EquationNote|2}}可以看出,在概率转移矩阵P上,EI是关于矩阵中每一个元素(从某一状态到另一状态的条件概率)的函数,于是我们自然会问:这样一个函数具有哪些数学性质?如它有没有极值点?极值点在哪里?凸性如何?最大值和最小值又是多少?
 
由公式{{EquationNote|2}}可以看出,在概率转移矩阵P上,EI是关于矩阵中每一个元素(从某一状态到另一状态的条件概率)的函数,于是我们自然会问:这样一个函数具有哪些数学性质?如它有没有极值点?极值点在哪里?凸性如何?最大值和最小值又是多少?
 +
===定义域===
 +
在离散状态和离散时间的马尔科夫链上,EI的定义域显然是概率转移矩阵P。P是一个由[math]N\times N[/math]个元素构成的矩阵,其中每一个元素[math]p_{ij}\in[0,1][/math]代表一个概率值,同时对于任意的行,这组概率值需要满足归一化条件,也就是对于任意的[math]\forall i\in[1,N][/math]:
    +
{{NumBlk|:|
 +
<math>
 +
||P_i||_1=\sum_{j=1}^N p_{ij}=1
 +
</math>
 +
|{{EquationRef|3}}}}
 +
因此EI的定义域,也就是P的可能空间并不是全部[math]N\times N[/math]维的实数空间[math]\mathcal{R}^{N^2}[/math],由于归一化条件{{EquationNote|3}}的存在,使得该定义域成为一个[math]N\times N[/math]维实数空间中的一个子空间。如何表达这个子空间呢?
 +
 +
首先,对于任意一个行向量[math]P_i[/math]来说,它的取值范围空间为N维实数空间中的一个超正多面体。例如,当[math]N=2[/math]的时候,该空间为一条直线:[math]p_{i,1}+p_{i,2}=1, \forall i\in\{1,2\}[/math]。当[math]N=3[/math]的时候,该空间为一张三维空间中的平面:[math]p_{i,1}+p_{i,2}+p_{i,3}=1, \forall i\in\{1,2,3\}[/math]。这两个空间如下图所示:
 +
 +
在一般情况,我们将N维空间下的行向量[math]P_i[/math]的取值范围空间定义为[math]\Delta=\{p_j|\sum_{j=1}^Np_j=1,p_j\in[0,1]\}[/math],则N个这样的空间的笛卡尔积即为EI的定义域:
 +
 +
<math>
 +
Dom(EI)=\Delta\times \Delta\cdots\times\Delta=\Delta^N
 +
</math>
 
===一阶导数及极值点===
 
===一阶导数及极值点===
   第479行: 第495行:  
EI_{max}=\log N
 
EI_{max}=\log N
 
</math>
 
</math>
      
==最简马尔科夫链下的解析解==
 
==最简马尔科夫链下的解析解==
372

个编辑

导航菜单