更改

跳到导航 跳到搜索
添加86字节 、 2024年6月7日 (星期五)
第4行: 第4行:  
有效信息(effective informaion,EI)这个概念最早由[[Giulio Tononi]]等人在2003年提出<ref name=tononi_2003>{{cite journal |last1=Tononi|first1=G.|last2=Sporns|first2=O.|title=Measuring information integration|journal=BMC Neuroscience|volume=4 |issue=31 |year=2003|url=https://doi.org/10.1186/1471-2202-4-31}}</ref>,作为[[整合信息论]]中的一个关键指标。当一个系统各个组分之间具有很强的因果关联的时候,可以说这个系统便具备很高的[[整合程度]],而有效信息:EI,便是用来度量这种因果关联程度的关键指标。
 
有效信息(effective informaion,EI)这个概念最早由[[Giulio Tononi]]等人在2003年提出<ref name=tononi_2003>{{cite journal |last1=Tononi|first1=G.|last2=Sporns|first2=O.|title=Measuring information integration|journal=BMC Neuroscience|volume=4 |issue=31 |year=2003|url=https://doi.org/10.1186/1471-2202-4-31}}</ref>,作为[[整合信息论]]中的一个关键指标。当一个系统各个组分之间具有很强的因果关联的时候,可以说这个系统便具备很高的[[整合程度]],而有效信息:EI,便是用来度量这种因果关联程度的关键指标。
   −
到了2013年,[[Giulio Tononi]]的学生[[Erik Hoel]]等人将有效信息这个概念进一步提炼出来,从而定量地刻画涌现,于是提出了[[因果涌现]]理论<ref name=hoel_2013>{{cite journal|last1=Hoel|first1=Erik P.|last2=Albantakis|first2=L.|last3=Tononi|first3=G.|title=Quantifying causal emergence shows that macro can beat micro|journal=Proceedings of the National Academy of Sciences|volume=110|issue=49|page=19790–19795|year=2013|url=https://doi.org/10.1073/pnas.1314922110}}</ref>。在这个理论中,Hoel使用了[[Judea Pearl]]的[[do算子]]来改造一般的[[互信息]]指标<ref name=pearl_causality>{{cite book|title=因果论——模型、推理和推断|author1=Judea Pearl|author2=刘礼|author3=杨矫云|author4=廖军|author5=李廉|publisher=机械工业出版社|year=2022|month=4}}</ref>,这使得EI本质上与[[互信息]]不同。[[互信息]]度量的是相关性,而有效信息因为引入了[[do算子]],从而可以度量因果性。在这一文章中,作者们同时提出了[[归一化的有效信息]]指标Eff。
+
到了2013年,[[Giulio Tononi]]的学生[[Erik Hoel]]等人将有效信息这个概念进一步提炼出来,从而定量地刻画涌现,于是提出了[[因果涌现]]理论<ref name=hoel_2013>{{cite journal|last1=Hoel|first1=Erik P.|last2=Albantakis|first2=L.|last3=Tononi|first3=G.|title=Quantifying causal emergence shows that macro can beat micro|journal=Proceedings of the National Academy of Sciences|volume=110|issue=49|page=19790–19795|year=2013|url=https://doi.org/10.1073/pnas.1314922110}}</ref>。在这个理论中,Hoel使用了[[Judea Pearl]]的[[do算子]]来改造一般的[[互信息]]指标<ref name="pearl_causality">{{cite book|title=因果论——模型、推理和推断|author1=Judea Pearl|author2=刘礼|author3=杨矫云|author4=廖军|author5=李廉|publisher=机械工业出版社|year=2022|month=4}}</ref>,这使得EI本质上与[[互信息]]不同。[[互信息]]度量的是相关性,而有效信息因为引入了[[do算子]],从而可以度量因果性。在这一文章中,作者们同时提出了[[归一化的有效信息]]指标Eff。
    
然而,传统的EI主要被用于具有离散状态的[[马尔科夫链]]上。为了能扩充到一般的实数域,P. Chvykov和E. Hoel于2020年合作提出了[[因果几何]]理论<ref  name=Chvykov_causal_geometry>{{cite journal|author1=Chvykov P|author2=Hoel E.|title=Causal Geometry|journal=Entropy|year=2021|volume=23|issue=1|page=24|url=https://doi.org/10.3390/e2}}</ref>,将EI的定义扩充到了具备连续状态变量的函数映射上,并通过结合[[信息几何]]理论,探讨了EI的一种微扰形式,并与[[Fisher信息]]指标进行了比较,提出了[[因果几何]]的概念。然而,这一连续变量的EI计算方法需要假设方程中的正态分布随机变量的方差是无限小的,这一要求显然过于苛刻了。
 
然而,传统的EI主要被用于具有离散状态的[[马尔科夫链]]上。为了能扩充到一般的实数域,P. Chvykov和E. Hoel于2020年合作提出了[[因果几何]]理论<ref  name=Chvykov_causal_geometry>{{cite journal|author1=Chvykov P|author2=Hoel E.|title=Causal Geometry|journal=Entropy|year=2021|volume=23|issue=1|page=24|url=https://doi.org/10.3390/e2}}</ref>,将EI的定义扩充到了具备连续状态变量的函数映射上,并通过结合[[信息几何]]理论,探讨了EI的一种微扰形式,并与[[Fisher信息]]指标进行了比较,提出了[[因果几何]]的概念。然而,这一连续变量的EI计算方法需要假设方程中的正态分布随机变量的方差是无限小的,这一要求显然过于苛刻了。
第381行: 第381行:     
首先,对于任意一个行向量[math]P_i[/math]来说,它的取值范围空间为N维实数空间中的一个超正多面体。例如,当[math]N=2[/math]的时候,该空间为一条直线:[math]p_{i,1}+p_{i,2}=1, \forall i\in\{1,2\}[/math]。当[math]N=3[/math]的时候,该空间为一张三维空间中的平面:[math]p_{i,1}+p_{i,2}+p_{i,3}=1, \forall i\in\{1,2,3\}[/math]。这两个空间如下图所示:
 
首先,对于任意一个行向量[math]P_i[/math]来说,它的取值范围空间为N维实数空间中的一个超正多面体。例如,当[math]N=2[/math]的时候,该空间为一条直线:[math]p_{i,1}+p_{i,2}=1, \forall i\in\{1,2\}[/math]。当[math]N=3[/math]的时候,该空间为一张三维空间中的平面:[math]p_{i,1}+p_{i,2}+p_{i,3}=1, \forall i\in\{1,2,3\}[/math]。这两个空间如下图所示:
 +
 +
[[文件:P1+p2=1.png|边框|301x301像素]][[文件:P1+p2+p3=1.png|380x380像素]]
    
在一般情况,我们将N维空间下的行向量[math]P_i[/math]的取值范围空间定义为[math]\Delta=\{p_j|\sum_{j=1}^Np_j=1,p_j\in[0,1]\}[/math],则N个这样的空间的笛卡尔积即为EI的定义域:
 
在一般情况,我们将N维空间下的行向量[math]P_i[/math]的取值范围空间定义为[math]\Delta=\{p_j|\sum_{j=1}^Np_j=1,p_j\in[0,1]\}[/math],则N个这样的空间的笛卡尔积即为EI的定义域:
372

个编辑

导航菜单