更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
有效信息
(查看源代码)
2024年6月7日 (五) 15:51的版本
添加543字节
、
2024年6月7日 (星期五)
→一维函数映射
第637行:
第637行:
EI&=I(y;x|do(x\sim U[-L/2,L/2]))\\
EI&=I(y;x|do(x\sim U[-L/2,L/2]))\\
&=\int_{-L/2}^{L/2}\int_{f([-L/2,L/2])}p(x)p(y|x)\ln\frac{p(y|x)}{p(y)}dydx\\
&=\int_{-L/2}^{L/2}\int_{f([-L/2,L/2])}p(x)p(y|x)\ln\frac{p(y|x)}{p(y)}dydx\\
−
&=\int_{-L/2}^{L/2}\int_{f([-L/2,L/2])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\frac{\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)}{\int_{-L/2}^{L/2}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz}dydx
+
&=\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx-\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{L}\int_{-\frac{L}{2}}^{\frac{L}{2}}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz\right]dydx\\
+
&=\int_{-L/2}^{L/2}\int_{f([-L/2,L/2])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\frac{\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)}{\int_{-L/2}^{L/2}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz}dydx
\\
+
&\approx \ln(\frac{L}{\sqrt{2\pi e}})+\frac{1}{2L}\int_{-L/2}^{L/2}\ln \left(\frac{f'(x)}{\epsilon}\right)^2dx.
\end{aligned}
\end{aligned}
</math>
</math>
−
\approx \ln(\frac{L}{\sqrt{2\pi e}})+\frac{1}{2L}\int_{-L/2}^{L/2}\ln \left(\frac{f'(x)}{\epsilon}\right)^2dx.
如果同时考虑两种噪声,并且如果干预空间大小为<math>L
如果同时考虑两种噪声,并且如果干预空间大小为<math>L
Jake
786
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本