更改

跳到导航 跳到搜索
删除826字节 、 2024年6月7日 (星期五)
第653行: 第653行:  
<math>
 
<math>
 
\begin{aligned}
 
\begin{aligned}
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx\approx \int_{-\infty}^{\infty}\int_{\infty,\infty])}p(x)p(y|x)\ln p(y|x)dydx\\
+
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx\\
 +
&\approx \int_{-\infty}^{\infty}\int_{\infty,\infty])}p(x)p(y|x)\ln p(y|x)dydx\\
 
&=\int_{-\infty}^{\infty}\int_{\infty,\infty])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\
 
&=\int_{-\infty}^{\infty}\int_{\infty,\infty])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\
 
&=\ln(\frac{L}{\sqrt{2\pi e}})
 
&=\ln(\frac{L}{\sqrt{2\pi e}})
第674行: 第675行:     
<math>
 
<math>
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y)dydx \approx \frac{1}{L}\cdot\frac{1}{f'(x_0)}
+
\begin{aligned}
 +
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y)dydx \approx \frac{1}{L}\cdot\frac{1}{f'(x_0)}\\
 +
&\approx \ln(\frac{L}{\sqrt{2\pi e}})+\frac{1}{2L}\int_{-L/2}^{L/2}\ln \left(\frac{f'(x)}{\epsilon}\right)^2dx
 +
\end{aligned}
 
</math>
 
</math>
  −
&=\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx-\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{L}\int_{-\frac{L}{2}}^{\frac{L}{2}}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz\right]dydx\\
  −
&=\int_{-L/2}^{L/2}\int_{f([-L/2,L/2])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\frac{\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)}{\int_{-L/2}^{L/2}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz}dydx\\
  −
&\approx \ln(\frac{L}{\sqrt{2\pi e}})+\frac{1}{2L}\int_{-L/2}^{L/2}\ln \left(\frac{f'(x)}{\epsilon}\right)^2dx.  
  −
  −
      
如果同时考虑两种噪声,并且如果干预空间大小为<math>L
 
如果同时考虑两种噪声,并且如果干预空间大小为<math>L
786

个编辑

导航菜单