第653行: |
第653行: |
| <math> | | <math> |
| \begin{aligned} | | \begin{aligned} |
− | \int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx\approx \int_{-\infty}^{\infty}\int_{\infty,\infty])}p(x)p(y|x)\ln p(y|x)dydx\\ | + | \int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx\\ |
| + | &\approx \int_{-\infty}^{\infty}\int_{\infty,\infty])}p(x)p(y|x)\ln p(y|x)dydx\\ |
| &=\int_{-\infty}^{\infty}\int_{\infty,\infty])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\ | | &=\int_{-\infty}^{\infty}\int_{\infty,\infty])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\ |
| &=\ln(\frac{L}{\sqrt{2\pi e}}) | | &=\ln(\frac{L}{\sqrt{2\pi e}}) |
第674行: |
第675行: |
| | | |
| <math> | | <math> |
− | \int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y)dydx \approx \frac{1}{L}\cdot\frac{1}{f'(x_0)} | + | \begin{aligned} |
| + | \int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y)dydx \approx \frac{1}{L}\cdot\frac{1}{f'(x_0)}\\ |
| + | &\approx \ln(\frac{L}{\sqrt{2\pi e}})+\frac{1}{2L}\int_{-L/2}^{L/2}\ln \left(\frac{f'(x)}{\epsilon}\right)^2dx |
| + | \end{aligned} |
| </math> | | </math> |
− |
| |
− | &=\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx-\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{L}\int_{-\frac{L}{2}}^{\frac{L}{2}}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz\right]dydx\\
| |
− | &=\int_{-L/2}^{L/2}\int_{f([-L/2,L/2])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\frac{\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)}{\int_{-L/2}^{L/2}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(z))^2}{\sigma^2}\right)dz}dydx\\
| |
− | &\approx \ln(\frac{L}{\sqrt{2\pi e}})+\frac{1}{2L}\int_{-L/2}^{L/2}\ln \left(\frac{f'(x)}{\epsilon}\right)^2dx.
| |
− |
| |
− |
| |
| | | |
| 如果同时考虑两种噪声,并且如果干预空间大小为<math>L | | 如果同时考虑两种噪声,并且如果干预空间大小为<math>L |