更改

跳到导航 跳到搜索
添加347字节 、 2024年6月30日 (星期日)
第160行: 第160行:     
基于机器学习的方法学习观态<math>V</math>以及最大化<math>\mathrm{\Psi} </math>:
 
基于机器学习的方法学习观态<math>V</math>以及最大化<math>\mathrm{\Psi} </math>:
 +
    
====神经信息压缩方法====
 
====神经信息压缩方法====
NIS以及NIS+
      
近年来,新兴的人工智能技术已经攻克一系列重大难题,同时机器学习方法配备了各种精心设计的神经网络结构和自动微分技术,可以在巨大的函数空间中逼近任何函数。因此,[[张江]]等<ref>Zhang J, Liu K. Neural information squeezer for causal emergence[J]. Entropy, 2022, 25(1): 26.</ref>尝试基于神经网络提出了一种基于数据驱动的能够从时间序列数据中识别系统中的因果涌现方法,该方法能自动提取有效的粗粒度策略和宏观动力学,克服了信息分解方法中的种种不足。
 
近年来,新兴的人工智能技术已经攻克一系列重大难题,同时机器学习方法配备了各种精心设计的神经网络结构和自动微分技术,可以在巨大的函数空间中逼近任何函数。因此,[[张江]]等<ref>Zhang J, Liu K. Neural information squeezer for causal emergence[J]. Entropy, 2022, 25(1): 26.</ref>尝试基于神经网络提出了一种基于数据驱动的能够从时间序列数据中识别系统中的因果涌现方法,该方法能自动提取有效的粗粒度策略和宏观动力学,克服了信息分解方法中的种种不足。
第196行: 第196行:     
同时NIS方法与前面提到的G-emergence也有相似之处,例如,NIS同样采用了格兰杰因果的思想:通过预测下一个时间步的微观状态来优化有效的宏观状态。然而,这两个框架之间有几个明显的区别:a)在G-emergence理论中,宏观状态需要人工选择,然后NIS中是通过自动优化粗粒化策略来得到宏观状态;b)NIS使用神经网络来预测未来状态,而G-emergence使用自回归技术来拟合数据。
 
同时NIS方法与前面提到的G-emergence也有相似之处,例如,NIS同样采用了格兰杰因果的思想:通过预测下一个时间步的微观状态来优化有效的宏观状态。然而,这两个框架之间有几个明显的区别:a)在G-emergence理论中,宏观状态需要人工选择,然后NIS中是通过自动优化粗粒化策略来得到宏观状态;b)NIS使用神经网络来预测未来状态,而G-emergence使用自回归技术来拟合数据。
 +
 +
但是方法存在一些不足,作者将优化过程分为两个阶段,但是没有真正的最大化有效信息。因此,杨等人进一步改进该方法,通过引入反向动力学以及重加权技术引入变分不等式将原始的最大化有效信息转换成最大化其变分下界来直接解决该目标。
 +
 +
[[文件:NIS+.png|缩略图]]
    
==实例 ==
 
==实例 ==
1,255

个编辑

导航菜单