更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
因果涌现
(查看源代码)
2024年6月30日 (日) 17:52的版本
添加1字节
、
2024年6月30日 (星期日)
→神经信息压缩方法
第219行:
第219行:
但是该方法存在一些不足,作者将优化过程分为两个阶段,但是没有真正的最大化有效信息。因此,杨等人进一步改进该方法,通过引入反向动力学以及重加权技术借助变分不等式将原始的最大化有效信息转换成最大化其变分下界来直接优化目标函数。目标函数可以被定义为在给定微观预测足够小的情况下最大化宏观动力学的有效信息:
但是该方法存在一些不足,作者将优化过程分为两个阶段,但是没有真正的最大化有效信息。因此,杨等人进一步改进该方法,通过引入反向动力学以及重加权技术借助变分不等式将原始的最大化有效信息转换成最大化其变分下界来直接优化目标函数。目标函数可以被定义为在给定微观预测足够小的情况下最大化宏观动力学的有效信息:
+
<math>\max_{\phi,f_q,\phi^+} \mathcal{J}(f_q),</math>
<math>\max_{\phi,f_q,\phi^+} \mathcal{J}(f_q),</math>
相信未来
2,437
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本