更改

跳到导航 跳到搜索
添加33字节 、 2024年7月6日 (星期六)
第66行: 第66行:  
在这个实验中,SIR(易感、感染、恢复或死亡)模型是一个简单的宏观动态系统,而微观变量则是通过在宏观变量中引入噪声产生的。主要目的是评估我们的模型是否能够有效地去除噪声、发现有意义的宏观动态、识别CE,并展示超越训练数据集分布的泛化能力。
 
在这个实验中,SIR(易感、感染、恢复或死亡)模型是一个简单的宏观动态系统,而微观变量则是通过在宏观变量中引入噪声产生的。主要目的是评估我们的模型是否能够有效地去除噪声、发现有意义的宏观动态、识别CE,并展示超越训练数据集分布的泛化能力。
   −
[[文件:NIS+ sir.jpg|有框|NIS+ sir|]]
+
[[文件:NIS+ sir.jpg|替代=|居中|缩略图|529x529像素]]
    
(a) SIR模型的相空间,以及具有相同感染率和恢复率或死亡率的四个示例轨迹。同时显示用于训练的完整数据集(蓝色区域)和部分数据集(虚线区域),分别由63,000和42,000个均匀分布的数据点组成。(b)曲线描述了不同模型的维平均有效信息(J)随训练时间的变化。线表示平均值,而带宽表示五次重复实验的标准差。(c)比较了SIR动力学的矢量场、NIS+的习得宏观动力学和习得编码器的雅可比矩阵变换后的宏观动力学。每个箭头代表一个方向,以及在该坐标点的动力学导数的大小。(d)将整体与局部进行比较,以评估在部分数据集(缺失42,000个数据点)或完整数据集上训练的不同模型的多步预测误差。这些模型包括NIS+、NIS、前馈神经网络(NN)、具有逆概率加权和反向动力学学习技术的前馈神经网络(NN+)、变分自编码器(VAE)及其重加权和反向动力学版本(VAE+)。(e).微观动力学(J (fm))和宏观动力学(J (fm))的CE(∆J)和EI的变化绘制为观测噪声变化的标准差σ。所有这些指标都是跨维度平均的。按照Rosas对CE的定义和计算方法,黄线表示Rosas ' Ψ的变化。垂直线表示归一化MAE的阈值为0.3。当σ大于阈值时,则不符合式1的误差约束,结果不可靠。(f)将SIR动力学的矢量场、NIS的习得宏观动力学和NIS的编码器雅可比矩阵变换后的宏观动力学与(c)进行比较。
 
(a) SIR模型的相空间,以及具有相同感染率和恢复率或死亡率的四个示例轨迹。同时显示用于训练的完整数据集(蓝色区域)和部分数据集(虚线区域),分别由63,000和42,000个均匀分布的数据点组成。(b)曲线描述了不同模型的维平均有效信息(J)随训练时间的变化。线表示平均值,而带宽表示五次重复实验的标准差。(c)比较了SIR动力学的矢量场、NIS+的习得宏观动力学和习得编码器的雅可比矩阵变换后的宏观动力学。每个箭头代表一个方向,以及在该坐标点的动力学导数的大小。(d)将整体与局部进行比较,以评估在部分数据集(缺失42,000个数据点)或完整数据集上训练的不同模型的多步预测误差。这些模型包括NIS+、NIS、前馈神经网络(NN)、具有逆概率加权和反向动力学学习技术的前馈神经网络(NN+)、变分自编码器(VAE)及其重加权和反向动力学版本(VAE+)。(e).微观动力学(J (fm))和宏观动力学(J (fm))的CE(∆J)和EI的变化绘制为观测噪声变化的标准差σ。所有这些指标都是跨维度平均的。按照Rosas对CE的定义和计算方法,黄线表示Rosas ' Ψ的变化。垂直线表示归一化MAE的阈值为0.3。当σ大于阈值时,则不符合式1的误差约束,结果不可靠。(f)将SIR动力学的矢量场、NIS的习得宏观动力学和NIS的编码器雅可比矩阵变换后的宏观动力学与(c)进行比较。
第78行: 第78行:  
Boids模型是一个著名的模拟鸟类集体行为的多代理模型,在这个实验中测试了NIS+ 在具有内在和外在噪声的不同环境中识别突发集体行为和CE 量化的能力。为了提高训练粗粒度策略的可解释性,将尝试在学习到的宏观状态和微观状态之间给出明确的对应关系。在300×300画布上使用N = 16个boids进行模拟以生成训练数据。为了评估NIS+发现有意义的宏观状态的能力,我们将所有boids分为两组,并人为地修改boids模型,为每组引入不同的恒定转向力。这种修改确保了两组具有不同转弯角度的独立轨迹。每个物体在每个时间步长的微观状态包括它们的水平和垂直位置,以及它们的二维速度。所有生物的微观状态形成一个4N维实数向量,作为训练NIS+的输入。
 
Boids模型是一个著名的模拟鸟类集体行为的多代理模型,在这个实验中测试了NIS+ 在具有内在和外在噪声的不同环境中识别突发集体行为和CE 量化的能力。为了提高训练粗粒度策略的可解释性,将尝试在学习到的宏观状态和微观状态之间给出明确的对应关系。在300×300画布上使用N = 16个boids进行模拟以生成训练数据。为了评估NIS+发现有意义的宏观状态的能力,我们将所有boids分为两组,并人为地修改boids模型,为每组引入不同的恒定转向力。这种修改确保了两组具有不同转弯角度的独立轨迹。每个物体在每个时间步长的微观状态包括它们的水平和垂直位置,以及它们的二维速度。所有生物的微观状态形成一个4N维实数向量,作为训练NIS+的输入。
   −
[[文件:NIS+ boid.png|NIS+ boid|缩略图|330x330像素]]
+
[[文件:NIS+ boid.png|NIS+ boid|缩略图|462x462px|替代=|居中]]
    
上图为NIS+学习Boids模型的集体群集行为的实验结果。(a)和(e)给出了各种条件下星体轨迹的实际和预测数据。具体来说,他们给出了在两个分离组和随机偏转角度条件下的多步(50步)预测的比较结果。它们的本征噪声水平α分别为0.001和0.4。(b)展示了多步预测的平均绝对误差(MAE)的上升,因为半径r(表示(a)中物体的初始位置范围)超出了训练数据的限制。(c)用不同的q超参数(代表不同宏观状态的尺度)描述了NIS+的训练时代中维度平均因果出现(∆J)的变化趋势。(d)为显著性图,直观地描述了每个宏观维度与每个体的空间坐标之间的关联。我们用橙色点突出了每个宏观状态维度中最重要的对应微观状态,这些微观状态是使用应用于模型的积分梯度(IG)方法确定的。横轴表示16个物体在微观状态下的x和y坐标,纵轴表示8个宏观维度。淡蓝色的虚线区分了不同个体体的坐标,而钢蓝色的实线分隔了实体组。
 
上图为NIS+学习Boids模型的集体群集行为的实验结果。(a)和(e)给出了各种条件下星体轨迹的实际和预测数据。具体来说,他们给出了在两个分离组和随机偏转角度条件下的多步(50步)预测的比较结果。它们的本征噪声水平α分别为0.001和0.4。(b)展示了多步预测的平均绝对误差(MAE)的上升,因为半径r(表示(a)中物体的初始位置范围)超出了训练数据的限制。(c)用不同的q超参数(代表不同宏观状态的尺度)描述了NIS+的训练时代中维度平均因果出现(∆J)的变化趋势。(d)为显著性图,直观地描述了每个宏观维度与每个体的空间坐标之间的关联。我们用橙色点突出了每个宏观状态维度中最重要的对应微观状态,这些微观状态是使用应用于模型的积分梯度(IG)方法确定的。横轴表示16个物体在微观状态下的x和y坐标,纵轴表示8个宏观维度。淡蓝色的虚线区分了不同个体体的坐标,而钢蓝色的实线分隔了实体组。
1,809

个编辑

导航菜单