更改

跳到导航 跳到搜索
添加3字节 、 2024年7月13日 (星期六)
第7行: 第7行:  
涌现一直是复杂系统中的一个重要特性和研究对象,是许多关于复杂性本质以及宏微观组织之间关系讨论的中心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref name=":7">Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。尽管在各个领域都被指出存在涌现的现象<ref name=":7" /><ref>Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1996.</ref>,如鸟类的群体行为<ref>Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34.</ref>,大脑中的意识形成,以及大语言模型的涌现能力<ref>Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682.</ref>,但目前还没有对这一现象的统一理解。以往对涌现有很多定性的研究,如 Bedau et al<ref name=":9">Bedau, M.A. Weak emergence. Philos. Perspect. 1997, 11, 375–399. [CrossRef] </ref><ref>Bedau, M. Downward causation and the autonomy of weak emergence. Principia Int. J. Epistemol. 2002, 6, 5–50. </ref>对涌现进行了分类,可以将涌现分为名义涌现<ref name=":10">Harré, R. The Philosophies of Science; Oxford University Press: New York, NY, USA , 1985.</ref><ref name=":11">Baas, N.A. Emergence, hierarchies, and hyperstructures. In Artificial Life III, SFI Studies in the Science of Complexity, XVII; Routledge: Abingdon, UK, 1994; pp. 515–537.</ref>、弱涌现<ref name=":9" /><ref>Newman, D.V. Emergence and strange attractors. Philos. Sci. 1996, 63, 245–261. [CrossRef]</ref>与强涌现<ref name=":12">Kim, J. ‘Downward causation’ in emergentism and nonreductive physicalism. In Emergence or Reduction; Walter de Gruyter: Berlin, Germany, 1992; pp. 119–138. </ref><ref name=":13">O’Connor, T. Emergent properties. Am. Philos. Q. 1994, 31, 91–104</ref>。名义涌现可以理解为能被宏观层级的模式或过程所拥有,但不能被其微观层级的组件所拥有的属性<ref name=":10" /><ref name=":11" />。弱涌现是指宏观层面的属性或过程是通过单个组件之间以复杂的方式相互作用产生的,由于计算不可约性的原理,它们不能轻易地简化为微观层面的属性。对于弱涌现来说,其模式产生的原因可能来自微观和宏观两个层面<ref name=":12" /><ref name=":13" />。因此,涌现的因果关系可能与微观因果关系并存。而对于强涌现来说存在很多的争论,它指的是宏观层面的属性,原则上不能简化为微观层面的属性,包括个体之间的相互作用。此外,Jochen Fromm进一步将强涌现解释为[[向下因果]]的因果效应<ref>Fromm, J. Types and forms of emergence. arXiv 2005, arXiv:nlin/0506028</ref>。考虑一个包含三个不同尺度的系统:微观、介观和宏观。向下因果关系是指从宏观层面向介观层面或从介观层面向微观层面的因果力。然而,关于向下因果关系本身的概念存在许多争议<ref>Bedau, M.A.; Humphreys, P. Emergence: Contemporary Readings in Philosophy and Science; MIT Press: Cambridge, MA, USA, 2008. </ref><ref>Yurchenko, S.B. Can there be a synergistic core emerging in the brain hierarchy to control neural activity by downward causation? TechRxiv 2023 . [CrossRef] </ref>。
 
涌现一直是复杂系统中的一个重要特性和研究对象,是许多关于复杂性本质以及宏微观组织之间关系讨论的中心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref name=":7">Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。尽管在各个领域都被指出存在涌现的现象<ref name=":7" /><ref>Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1996.</ref>,如鸟类的群体行为<ref>Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34.</ref>,大脑中的意识形成,以及大语言模型的涌现能力<ref>Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682.</ref>,但目前还没有对这一现象的统一理解。以往对涌现有很多定性的研究,如 Bedau et al<ref name=":9">Bedau, M.A. Weak emergence. Philos. Perspect. 1997, 11, 375–399. [CrossRef] </ref><ref>Bedau, M. Downward causation and the autonomy of weak emergence. Principia Int. J. Epistemol. 2002, 6, 5–50. </ref>对涌现进行了分类,可以将涌现分为名义涌现<ref name=":10">Harré, R. The Philosophies of Science; Oxford University Press: New York, NY, USA , 1985.</ref><ref name=":11">Baas, N.A. Emergence, hierarchies, and hyperstructures. In Artificial Life III, SFI Studies in the Science of Complexity, XVII; Routledge: Abingdon, UK, 1994; pp. 515–537.</ref>、弱涌现<ref name=":9" /><ref>Newman, D.V. Emergence and strange attractors. Philos. Sci. 1996, 63, 245–261. [CrossRef]</ref>与强涌现<ref name=":12">Kim, J. ‘Downward causation’ in emergentism and nonreductive physicalism. In Emergence or Reduction; Walter de Gruyter: Berlin, Germany, 1992; pp. 119–138. </ref><ref name=":13">O’Connor, T. Emergent properties. Am. Philos. Q. 1994, 31, 91–104</ref>。名义涌现可以理解为能被宏观层级的模式或过程所拥有,但不能被其微观层级的组件所拥有的属性<ref name=":10" /><ref name=":11" />。弱涌现是指宏观层面的属性或过程是通过单个组件之间以复杂的方式相互作用产生的,由于计算不可约性的原理,它们不能轻易地简化为微观层面的属性。对于弱涌现来说,其模式产生的原因可能来自微观和宏观两个层面<ref name=":12" /><ref name=":13" />。因此,涌现的因果关系可能与微观因果关系并存。而对于强涌现来说存在很多的争论,它指的是宏观层面的属性,原则上不能简化为微观层面的属性,包括个体之间的相互作用。此外,Jochen Fromm进一步将强涌现解释为[[向下因果]]的因果效应<ref>Fromm, J. Types and forms of emergence. arXiv 2005, arXiv:nlin/0506028</ref>。考虑一个包含三个不同尺度的系统:微观、介观和宏观。向下因果关系是指从宏观层面向介观层面或从介观层面向微观层面的因果力。然而,关于向下因果关系本身的概念存在许多争议<ref>Bedau, M.A.; Humphreys, P. Emergence: Contemporary Readings in Philosophy and Science; MIT Press: Cambridge, MA, USA, 2008. </ref><ref>Yurchenko, S.B. Can there be a synergistic core emerging in the brain hierarchy to control neural activity by downward causation? TechRxiv 2023 . [CrossRef] </ref>。
   −
===早期相工作===
+
===早期相关工作===
 
虽然有了[[涌现]]的定性分类,然而却无法定量的刻画涌现的发生。早期已经有一些相关的工作尝试对涌现进行定量的分析。Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。
 
虽然有了[[涌现]]的定性分类,然而却无法定量的刻画涌现的发生。早期已经有一些相关的工作尝试对涌现进行定量的分析。Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。
  
22

个编辑

导航菜单