更改

跳到导航 跳到搜索
添加587字节 、 2024年7月13日 (星期六)
第231行: 第231行:  
这些定量的量化因果涌现的方法已经广泛应用到很多[[复杂系统 Complex Systems|复杂系统]]中,包括具有成百上千节点的复杂网络以及神经网络,到具有明显涌现现象的[[康威的生命游戏 Conway's Game of Life|生命游戏]]、鸟群模型、蛋白质交互、生物以及真实的大脑网络等。
 
这些定量的量化因果涌现的方法已经广泛应用到很多[[复杂系统 Complex Systems|复杂系统]]中,包括具有成百上千节点的复杂网络以及神经网络,到具有明显涌现现象的[[康威的生命游戏 Conway's Game of Life|生命游戏]]、鸟群模型、蛋白质交互、生物以及真实的大脑网络等。
   −
在复杂网络上的应用
+
=== 在复杂网络上的应用 ===
 
2020年,Klein和Hoel改进此前提出的基于粗粒化的方法并将其应用到[[复杂网络]]中<ref>Klein B, Hoel E. The emergence of informative higher scales in complex networks[J]. Complexity, 2020, 20201-12.</ref>,作者借助随机游走子来定义网络中的马尔可夫链,将随机游走子放在节点上等价于对节点做干预,然后基于随机游走概率定义节点的转移概率矩阵。同时作者将[[有效信息]]与网络的连通性建立联系,网络中的连通性可以通过节点的出边和入边的权重的不确定性来表征,基于此定义复杂网络中的有效信息。
 
2020年,Klein和Hoel改进此前提出的基于粗粒化的方法并将其应用到[[复杂网络]]中<ref>Klein B, Hoel E. The emergence of informative higher scales in complex networks[J]. Complexity, 2020, 20201-12.</ref>,作者借助随机游走子来定义网络中的马尔可夫链,将随机游走子放在节点上等价于对节点做干预,然后基于随机游走概率定义节点的转移概率矩阵。同时作者将[[有效信息]]与网络的连通性建立联系,网络中的连通性可以通过节点的出边和入边的权重的不确定性来表征,基于此定义复杂网络中的有效信息。
   第238行: 第238行:  
在该文章中作者使用贪婪算法来构建宏观尺度的网络,然而对于大规模网络来说,效率仍然很低。随后,Griebenow等<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于谱聚类的方法来识别偏好依附网络中的因果涌现。相比贪婪算法以及梯度下降算法,谱聚类算法的计算时间最少,同时找到的宏观网络的因果涌现也更加显著。
 
在该文章中作者使用贪婪算法来构建宏观尺度的网络,然而对于大规模网络来说,效率仍然很低。随后,Griebenow等<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于谱聚类的方法来识别偏好依附网络中的因果涌现。相比贪婪算法以及梯度下降算法,谱聚类算法的计算时间最少,同时找到的宏观网络的因果涌现也更加显著。
   −
在生物系统上的应用
+
=== 在生物系统上的应用 ===
 
生物网络中充满噪音使得很难理解其内部的运作原理,这种噪音一方面来自系统的固有噪音,另一方面是由于测量或观察引入的, Klein等<ref>Klein B, Swain A, Byrum T, et al. Exploring noise, degeneracy and determinism in biological networks with the einet package[J]. Methods in Ecology and Evolution, 2022, 13(4): 799-804.</ref>进一步探索了生物网络中的噪声、简并性和确定性三者之间的关系以及具体含义。例如,基因表达网络中的高度确定性关系可以理解为一个基因几乎肯定会导致另一个基因的表达。同时生物系统在进化过程中也普遍存在简并现象,这两个原因导致目前尚不清楚在何种尺度上分析生物系统才能最好地理解它们的功能。Klein等<ref>Klein B, Hoel E, Swain A, et al. Evolution and emergence: higher order information structure in protein interactomes across the tree of life[J]. Integrative Biology, 2021, 13(12): 283-294.</ref>分析了超过1800个物种的蛋白质相互作用网络,发现宏观尺度的网络具有更小的噪音和简并性,同时与不参与宏观尺度的节点相比,组成宏观尺度交互群中的节点更具有弹性。因此,生物网络为了适应进化的要求,需要演化成宏观尺度以提高确定性来增强网络的弹性以及提高信息传输的有效性。
 
生物网络中充满噪音使得很难理解其内部的运作原理,这种噪音一方面来自系统的固有噪音,另一方面是由于测量或观察引入的, Klein等<ref>Klein B, Swain A, Byrum T, et al. Exploring noise, degeneracy and determinism in biological networks with the einet package[J]. Methods in Ecology and Evolution, 2022, 13(4): 799-804.</ref>进一步探索了生物网络中的噪声、简并性和确定性三者之间的关系以及具体含义。例如,基因表达网络中的高度确定性关系可以理解为一个基因几乎肯定会导致另一个基因的表达。同时生物系统在进化过程中也普遍存在简并现象,这两个原因导致目前尚不清楚在何种尺度上分析生物系统才能最好地理解它们的功能。Klein等<ref>Klein B, Hoel E, Swain A, et al. Evolution and emergence: higher order information structure in protein interactomes across the tree of life[J]. Integrative Biology, 2021, 13(12): 283-294.</ref>分析了超过1800个物种的蛋白质相互作用网络,发现宏观尺度的网络具有更小的噪音和简并性,同时与不参与宏观尺度的节点相比,组成宏观尺度交互群中的节点更具有弹性。因此,生物网络为了适应进化的要求,需要演化成宏观尺度以提高确定性来增强网络的弹性以及提高信息传输的有效性。
 
+
[[文件:蛋白质网络中的因果涌现.png|居中|缩略图|蛋白质网络中的因果涌现]]
 
Hoel等<ref>Hoel E, Levin M. Emergence of informative higher scales in biological systems: a computational toolkit for optimal prediction and control[J]. Communicative & Integrative Biology, 2020, 13(1): 108-118.</ref>借助[[有效信息]]理论进一步研究生物系统中的因果涌现,作者将有效信息应用到基因调控网络中,识别最能提供信息的心脏发育模型从而控制哺乳动物的心脏发育。通过量化酿酒酵母基因网络的最大联通集团的因果涌现,揭示富有信息的宏观尺度在生物学中是普遍存在的以及生命机制本身也经常运行在宏观尺度上。该方法也为生物学家提供一个可计算的工具来识别最具有信息的宏观尺度,并且可以在此基础上建模、预测、控制和理解复杂的生物系统。
 
Hoel等<ref>Hoel E, Levin M. Emergence of informative higher scales in biological systems: a computational toolkit for optimal prediction and control[J]. Communicative & Integrative Biology, 2020, 13(1): 108-118.</ref>借助[[有效信息]]理论进一步研究生物系统中的因果涌现,作者将有效信息应用到基因调控网络中,识别最能提供信息的心脏发育模型从而控制哺乳动物的心脏发育。通过量化酿酒酵母基因网络的最大联通集团的因果涌现,揭示富有信息的宏观尺度在生物学中是普遍存在的以及生命机制本身也经常运行在宏观尺度上。该方法也为生物学家提供一个可计算的工具来识别最具有信息的宏观尺度,并且可以在此基础上建模、预测、控制和理解复杂的生物系统。
   第249行: 第249行:  
在人工神经网络上的应用,Marrow等<ref>Marrow S, Michaud E J, Hoel E. Examining the Causal Structures of Deep Neural Networks Using Information Theory[J]. Entropy, 2020, 22(12): 1429.</ref>尝试引入一个基于[[信息论]]的指标即有效信息来量化和跟踪训练过程中DNN因果结构的变化,其中有效信息用于评估节点和边对每层下游目标的因果的影响程度。有效信息可以分解为灵敏性和简并性,通过观察模型训练过程中有效信息,包括灵敏性和简并性的变化就可以确定模型的泛化能力,从而帮助学者更好的理解和解释DNN的工作原理。
 
在人工神经网络上的应用,Marrow等<ref>Marrow S, Michaud E J, Hoel E. Examining the Causal Structures of Deep Neural Networks Using Information Theory[J]. Entropy, 2020, 22(12): 1429.</ref>尝试引入一个基于[[信息论]]的指标即有效信息来量化和跟踪训练过程中DNN因果结构的变化,其中有效信息用于评估节点和边对每层下游目标的因果的影响程度。有效信息可以分解为灵敏性和简并性,通过观察模型训练过程中有效信息,包括灵敏性和简并性的变化就可以确定模型的泛化能力,从而帮助学者更好的理解和解释DNN的工作原理。
   −
脑神经系统是一个涌现的多尺度[[复杂系统 Complex Systems|复杂系统]],在张等提出的[[NIS+]]方法中[Finding emergence in data by maximizing effective information],在FMRI数据上进行实验,选择人的静息态和看电影视觉任务,通过使用Schaefer atlas方法对原始的14000维数据降维到100个脑区,构建了6个不同尺度动力学,在视觉任务数据中发现scale=1时因果涌现最显著,通过归因分析发现视觉区发挥的作用最大,与真实的场景保持一致。此外,Luppi等人[A Synergistic Workspace for Human Consciousness Revealed by Integrated Information Decomposition],基于整合信息分解揭示人类意识的协同工作空间,作者构建了脑认知的三层架构,包括:外部环境、具体的模块以及协同全局空间。大脑的工作原理主要包括三个阶段,第一个阶段负责将来自多个不同模块的信息收集到工作空间中,第二个阶段负责在工作空间中整合收集到的信息,第三个阶段负责将全局信息广播到大脑的其他部分。作者在三类不同静息态的FMRI数据上进行实验,包括100个正常人、15个被试者(包括麻醉前、麻醉以及恢复三种不同状态)以及22个慢性意识障碍 (DOC)的被试者,论文方法使用整合信息分解得到协同信息和冗余信息,以及使用修正后的整合信息值<math>\Phi_R</math>,通过计算每两个脑区之间的协同和冗余值可以得到每个脑区发挥更大作用的信息,同时对比有意识人的数据,发现无意识人的整合信息发生显著降低的区域都属于协同信息发挥更大作用的脑区,同时发现整合信息显著降低的区域都属于DMN这样的功能区,从而定位到对于发生意识具有显著作用的脑区。
+
脑神经系统是一个涌现的多尺度[[复杂系统 Complex Systems|复杂系统]],在张等提出的[[NIS+]]方法中<ref>Yang, M.; Wang, Z.; Liu, K.; Rong, Y.; Yuan, B.; Zhang, J. Finding emergence in data: Causal emergence inspired dynamics learning. arXiv 2023, arXiv:2308.09952 .</ref>,在FMRI数据上进行实验,选择人的静息态和看电影视觉任务,通过使用Schaefer atlas方法对原始的14000维数据降维到100个脑区,构建了6个不同尺度动力学,在视觉任务数据中发现scale=1时因果涌现最显著,通过归因分析发现视觉区发挥的作用最大,与真实的场景保持一致。此外,Luppi等人<ref>Luppi AI, Mediano PA, Rosas FE, Allanson J, Pickard JD, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L. A synergistic workspace for human consciousness revealed by integrated information decomposition. BioRxiv. 2020 Nov 26:2020-11.</ref>,基于整合信息分解揭示人类意识的协同工作空间,作者构建了脑认知的三层架构,包括:外部环境、具体的模块以及协同全局空间。大脑的工作原理主要包括三个阶段,第一个阶段负责将来自多个不同模块的信息收集到工作空间中,第二个阶段负责在工作空间中整合收集到的信息,第三个阶段负责将全局信息广播到大脑的其他部分。作者在三类不同静息态的FMRI数据上进行实验,包括100个正常人、15个被试者(包括麻醉前、麻醉以及恢复三种不同状态)以及22个慢性意识障碍 (DOC)的被试者,论文方法使用整合信息分解得到协同信息和冗余信息,以及使用修正后的整合信息值<math>\Phi_R</math>,通过计算每两个脑区之间的协同和冗余值可以得到每个脑区发挥更大作用的信息,同时对比有意识人的数据,发现无意识人的整合信息发生显著降低的区域都属于协同信息发挥更大作用的脑区,同时发现整合信息显著降低的区域都属于DMN这样的功能区,从而定位到对于发生意识具有显著作用的脑区。
 +
[[文件:大脑工作的三阶段.png|居中|缩略图|大脑工作的三阶段]]
   −
因果表示学习是人工智能中的一个新兴领域,它试图将机器学习中的两个重要领域:表示学习和因果推断结合起来。尝试结合两个子领域的优势,自动提取数据背后的重要特征和因果关系<ref>B. Sch ̈olkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio, Toward causal representation learning, Proceedings of the IEEE 109 (5) (2021) 612–634.</ref>。基于粗粒化的因果涌现识别可以等价于一种因果表示学习任务。从数据中识别因果关系的涌现,等价于学习数据背后的潜在因果关系。具体来说,宏观状态可以看成因果变量,动力学学习器类比因果机制,粗粒化策略可以看作是一个从原始数据到因果表示的编码过程,有效信息可以理解为对机制的因果效应强度的衡量。由于这两者存在很多相似之处,使得两个领域的技术和概念可以相互学习。例如,因果表征学习技术可以应用于识别因果涌现,反过来,学习到的抽象因果表征可以被解释为一种宏观状态,从而增加因果表征学习的可解释性。但是两者也存在一些差异,主要包括两点:1)因果表示学习假设其背后存在一个真实的因果机制,数据是由这个因果机制产生的,然而宏观层面涌现出的状态和动力学之间可能并不存在“真正的因果关系”;2)因果涌现中的粗粒化后的宏观状态是一种低维的描述,然而因果表示学习中没有这个要求。但是,从认识论的视角看,两者并不存在差异,因为两者所做的都是从观察数据中提取有效信息,从而获得具有因果效应更强的表征。
+
=== 因果表示学习 ===
 +
因果表示学习是人工智能中的一个新兴领域,它试图将机器学习中的两个重要领域:表示学习和因果推断结合起来。尝试结合两个子领域的优势,自动提取数据背后的重要特征和因果关系<ref>B. Sch ̈olkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio, Toward causal representation learning, Proceedings of the IEEE 109 (5) (2021) 612–634.</ref>。基于粗粒化的因果涌现识别可以等价于一种因果表示学习任务。从数据中识别因果关系的涌现,等价于学习数据背后的潜在因果关系。具体来说,宏观状态可以看成因果变量,动力学学习器类比因果机制,粗粒化策略可以看作是一个从原始数据到因果表示的编码过程,有效信息可以理解为对机制的因果效应强度的衡量。由于这两者存在很多相似之处,使得两个领域的技术和概念可以相互学习。例如,因果表征学习技术可以应用于识别因果涌现,反过来,学习到的抽象因果表征可以被解释为一种宏观状态,从而增加因果表征学习的可解释性。但是两者也存在一些差异,主要包括两点:1)因果表示学习假设其背后存在一个真实的因果机制,数据是由这个因果机制产生的,然而宏观层面涌现出的状态和动力学之间可能并不存在“真正的因果关系”;2)因果涌现中的粗粒化后的宏观状态是一种低维的描述,然而因果表示学习中没有这个要求。但是,从认识论的视角看,两者并不存在差异,因为两者所做的都是从观察数据中提取有效信息,从而获得具有因果效应更强的表征。
    +
=== 基于世界模型的强化学习 ===
 
基于世界模型的强化学习假设其内部存在一个世界模型可以模拟智能体所面对的环境的动力学<ref>D. Ha, J. Schmidhuber, World models, arXiv preprint arXiv:1803.10122 (2018).</ref>。世界模型的动力学可以通过智能体与环境的相互作用来学习,该动力学也可以帮助智能体对不确定的环境做出计划和决策。同时为了表示复杂的环境,世界模型一定是对环境的粗粒化描述,一个典型的世界模型架构总是包含一个编码器和一个解码器。因此,基于世界模型的强化学习与因果涌现也存在很多相似之处。世界模型也可以被视为一种宏观动力学,环境中的所有状态可以看作是宏观状态,这些可以看成是压缩后的忽略无关信息的状态,能捕捉环境中最重要的因果特征,以便智能体做出更好的决策。在计划过程中,智能体也可以使用世界模型来模拟真实世界的动力学。因此,两个领域之间的相似性和共同特征可以帮助我们将一个领域的思想和技术借鉴到另一个领域。例如,具有世界模型的智能体可以将复杂系统作为一个整体来进行相互作用,并从相互作用中获得涌现的因果规律,从而更好的帮助我们做因果涌现识别任务。反过来,最大化有效信息技术也可以用于强化学习,使世界模型具有更强的因果特性。
 
基于世界模型的强化学习假设其内部存在一个世界模型可以模拟智能体所面对的环境的动力学<ref>D. Ha, J. Schmidhuber, World models, arXiv preprint arXiv:1803.10122 (2018).</ref>。世界模型的动力学可以通过智能体与环境的相互作用来学习,该动力学也可以帮助智能体对不确定的环境做出计划和决策。同时为了表示复杂的环境,世界模型一定是对环境的粗粒化描述,一个典型的世界模型架构总是包含一个编码器和一个解码器。因此,基于世界模型的强化学习与因果涌现也存在很多相似之处。世界模型也可以被视为一种宏观动力学,环境中的所有状态可以看作是宏观状态,这些可以看成是压缩后的忽略无关信息的状态,能捕捉环境中最重要的因果特征,以便智能体做出更好的决策。在计划过程中,智能体也可以使用世界模型来模拟真实世界的动力学。因此,两个领域之间的相似性和共同特征可以帮助我们将一个领域的思想和技术借鉴到另一个领域。例如,具有世界模型的智能体可以将复杂系统作为一个整体来进行相互作用,并从相互作用中获得涌现的因果规律,从而更好的帮助我们做因果涌现识别任务。反过来,最大化有效信息技术也可以用于强化学习,使世界模型具有更强的因果特性。
 +
[[文件:世界模型.png|居中|缩略图]]
    
==相关领域研究==
 
==相关领域研究==
150

个编辑

导航菜单