| 上述的一些定量量化涌现的方法往往没有考虑因果关系,最接近的也只是使用格兰杰因果不是真正的因果。随着近年来因果科学理论得到了进一步的发展,使得可以用数学框架来量化因果,因果描述的是一个动力学过程的因果效应<ref name=":14">Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref name=":8">Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。Judea Pearl<ref name=":8" />利用概率图形模型来描述因果相互作用。Pearl用不同的模型来区分并量化了三个层次的因果关系,这里我们比较关注因果阶梯中的第二层:对输入分布做干预。此外,由于发现的因果关系背后的不确定性和模糊性,测量两个变量之间的因果效应程度是另一个重要问题。许多独立的历史研究已经解决了因果关系测量的问题。这些测量方法包括休谟的恒定连接概念<ref>Spirtes, P.; Glymour, C.; Scheines, R. Causation Prediction and Search, 2nd ed.; MIT Press: Cambridge, MA, USA, 2000.</ref>和基于值函数的方法<ref>Chickering, D.M. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2002, 2, 445–498.</ref>,Eells和Suppes将概率的提高作为因果关系的度量<ref>Eells, E. Probabilistic Causality; Cambridge University Press: Cambridge, UK, 1991; Volume 1</ref><ref>Suppes, P. A probabilistic theory of causality. Br. J. Philos. Sci. 1973, 24, 409–410.</ref>,以及Judea Pearl的因果度量<ref name=":14" />。 | | 上述的一些定量量化涌现的方法往往没有考虑因果关系,最接近的也只是使用格兰杰因果不是真正的因果。随着近年来因果科学理论得到了进一步的发展,使得可以用数学框架来量化因果,因果描述的是一个动力学过程的因果效应<ref name=":14">Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref name=":8">Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。Judea Pearl<ref name=":8" />利用概率图形模型来描述因果相互作用。Pearl用不同的模型来区分并量化了三个层次的因果关系,这里我们比较关注因果阶梯中的第二层:对输入分布做干预。此外,由于发现的因果关系背后的不确定性和模糊性,测量两个变量之间的因果效应程度是另一个重要问题。许多独立的历史研究已经解决了因果关系测量的问题。这些测量方法包括休谟的恒定连接概念<ref>Spirtes, P.; Glymour, C.; Scheines, R. Causation Prediction and Search, 2nd ed.; MIT Press: Cambridge, MA, USA, 2000.</ref>和基于值函数的方法<ref>Chickering, D.M. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2002, 2, 445–498.</ref>,Eells和Suppes将概率的提高作为因果关系的度量<ref>Eells, E. Probabilistic Causality; Cambridge University Press: Cambridge, UK, 1991; Volume 1</ref><ref>Suppes, P. A probabilistic theory of causality. Br. J. Philos. Sci. 1973, 24, 409–410.</ref>,以及Judea Pearl的因果度量<ref name=":14" />。 |