更改

跳到导航 跳到搜索
大小无更改 、 2024年7月14日 (星期日)
第211行: 第211行:     
为了识别系统中的因果涌现,作者提出一种[[神经信息压缩器]]方法,构建Encoder-Dynamic Learning-Decoder框架,该模型由编码器、动力学学习器以及解码器三个部分构成,用神经网络构建动力学学习器(<math>f </math>),用可逆神经网络(INN)构建编码器(Encoder)和解码器(Decoder)。该模型框架可以看成是一个神经信息压缩器,将包含噪音的微观态压缩成宏观态,丢弃无用的信息,从而使得宏观动力学的因果性更强。NIS方法的模型框架如图所示。
 
为了识别系统中的因果涌现,作者提出一种[[神经信息压缩器]]方法,构建Encoder-Dynamic Learning-Decoder框架,该模型由编码器、动力学学习器以及解码器三个部分构成,用神经网络构建动力学学习器(<math>f </math>),用可逆神经网络(INN)构建编码器(Encoder)和解码器(Decoder)。该模型框架可以看成是一个神经信息压缩器,将包含噪音的微观态压缩成宏观态,丢弃无用的信息,从而使得宏观动力学的因果性更强。NIS方法的模型框架如图所示。
[[文件:NIS模型框架图.png|居中|480x480像素|替代=NIS模型框架图|NIS模型框架图|缩略图]]
+
[[文件:NIS模型框架图.png|居中|400x400像素|替代=NIS模型框架图|NIS模型框架图|缩略图]]
    
具体来说,模型输入是微观状态<math>X_t\ (X_t^1,X_t^2,…,X_t^p ) </math>,<math>p </math>表示输入数据的维数,输出预测下一个时刻的微观状态<math>\hat{X}_{t+1}\left(\hat{X}_{t+1}^1, \hat{X}_{t+1}^2, \ldots, \hat{X}_{t+1}^p\right) </math>,该方法的目标函数是希望保证微观状态预测误差很小的条件下最大化有效信息,在保证预测误差约束足够小的情况下,NIS方法可以避免trivial解的出现。具体计算公式如下所示:
 
具体来说,模型输入是微观状态<math>X_t\ (X_t^1,X_t^2,…,X_t^p ) </math>,<math>p </math>表示输入数据的维数,输出预测下一个时刻的微观状态<math>\hat{X}_{t+1}\left(\hat{X}_{t+1}^1, \hat{X}_{t+1}^2, \ldots, \hat{X}_{t+1}^p\right) </math>,该方法的目标函数是希望保证微观状态预测误差很小的条件下最大化有效信息,在保证预测误差约束足够小的情况下,NIS方法可以避免trivial解的出现。具体计算公式如下所示:
1,884

个编辑

导航菜单