假设复杂动态系统的行为数据是时间序列 <math>\{x_t\}</math>,时间步长<math>t = 1,2,…, T</math>,维数是p,它们构成了可观测的微观状态,我们假设不存在未观测变量。一个粗粒化策略(编码器) <math>ϕ: R_p → R_q</math> ,其中 <math>q ≤ p</math>, <math>q </math>是宏观状态的维度,作为超参数给定;一个相应的反粗粒化策略(解码器)<math>ϕ^\dagger: R_q → R_p</math>,以及一个宏观层面的马尔可夫动力学(动力学学习器)<math>f_q</math> ,使得<math>f_q</math>的有效信息(<math>\mathcal{J}</math>)值在通过<math>ϕ</math>、<math>f_q</math>和<math>ϕ^\dagger</math>预测出的<math>x_{t+1}</math>与<math>x_{t+1}</math>的实际数据的差距最小的约束下最大化。<math>\epsilon</math>是给定的常数。它们的关系用方程表示为: | 假设复杂动态系统的行为数据是时间序列 <math>\{x_t\}</math>,时间步长<math>t = 1,2,…, T</math>,维数是p,它们构成了可观测的微观状态,我们假设不存在未观测变量。一个粗粒化策略(编码器) <math>ϕ: R_p → R_q</math> ,其中 <math>q ≤ p</math>, <math>q </math>是宏观状态的维度,作为超参数给定;一个相应的反粗粒化策略(解码器)<math>ϕ^\dagger: R_q → R_p</math>,以及一个宏观层面的马尔可夫动力学(动力学学习器)<math>f_q</math> ,使得<math>f_q</math>的有效信息(<math>\mathcal{J}</math>)值在通过<math>ϕ</math>、<math>f_q</math>和<math>ϕ^\dagger</math>预测出的<math>x_{t+1}</math>与<math>x_{t+1}</math>的实际数据的差距最小的约束下最大化。<math>\epsilon</math>是给定的常数。它们的关系用方程表示为: |