另一种[[因果涌现]]是[[基于信息分解的因果涌现]]理论,该理论也提供了一种从数据中识别因果涌现的方法(加文献,Rosas的Reconcile)。虽然这种方法可以避免对粗粒化策略的讨论,但是如果我们想获得精确的结果,也需要在系统状态空间的各种可能的所有子集上进行长时间的搜索,这将会在大规模的系统上遭遇指数爆炸。此外,Rosas提出的数值近似方法只能提供因果涌现的充分条件,而不是必要条件。同时,该方法依赖于研究者给出明确的粗粒化策略和相应的宏观动力学,这在实际中往往是非常困难的。上述两种方法的另一个共同缺点是需要一个明确的宏观和微观动力学的马尔可夫转移矩阵才可以从数据中估计转移概率。因此,上述方法对罕见事件概率的预测将产生几乎无法避免的、较大的偏差,尤其对于连续数据。 | 另一种[[因果涌现]]是[[基于信息分解的因果涌现]]理论,该理论也提供了一种从数据中识别因果涌现的方法(加文献,Rosas的Reconcile)。虽然这种方法可以避免对粗粒化策略的讨论,但是如果我们想获得精确的结果,也需要在系统状态空间的各种可能的所有子集上进行长时间的搜索,这将会在大规模的系统上遭遇指数爆炸。此外,Rosas提出的数值近似方法只能提供因果涌现的充分条件,而不是必要条件。同时,该方法依赖于研究者给出明确的粗粒化策略和相应的宏观动力学,这在实际中往往是非常困难的。上述两种方法的另一个共同缺点是需要一个明确的宏观和微观动力学的马尔可夫转移矩阵才可以从数据中估计转移概率。因此,上述方法对罕见事件概率的预测将产生几乎无法避免的、较大的偏差,尤其对于连续数据。 |