尽管已经存在许多跨时间和空间尺度的[[因果涌现]]的具体例子(加文献,Erik Hoel 2013,2017等),但是传统方法需要预先指定的粗粒化方案和微观动力学的马尔科夫转移矩阵。因此,我们仍然需要一种仅从数据中识别因果涌现的方法,同时找到最优的粗粒化策略和宏观动力学模型。解决这一问题的困难主要在于,需要一种方法来系统地、自动地搜索所有可能的粗粒化策略(函数、映射),从而得到宏观动力学,以及判断因果涌现。但搜索空间是微观和宏观之间所有可能的映射函数,体量非常巨大。为了解决这个问题,Klein 等人重点研究了具有网络结构的复杂系统,将粗粒化问题转化为节点聚类,即找到一种方法将节点分组,使得簇级别的连接比原始网络具有更大的[[有效信息]]。虽然该方法假设底层节点动态是扩散(随机游走)的,它还是被广泛应用于各个领域。同时,现实世界中的的复杂系统具有更丰富的节点动态。对于一般的动态系统,即使给定节点分组,粗粒化策略仍然需要考虑如何将簇中所有节点的微观状态映射到簇的宏观状态,也需要在巨大的粗粒化策略函数空间上进行繁琐的搜索。详细方法请参看:[[复杂网络中的因果涌现]] | 尽管已经存在许多跨时间和空间尺度的[[因果涌现]]的具体例子(加文献,Erik Hoel 2013,2017等),但是传统方法需要预先指定的粗粒化方案和微观动力学的马尔科夫转移矩阵。因此,我们仍然需要一种仅从数据中识别因果涌现的方法,同时找到最优的粗粒化策略和宏观动力学模型。解决这一问题的困难主要在于,需要一种方法来系统地、自动地搜索所有可能的粗粒化策略(函数、映射),从而得到宏观动力学,以及判断因果涌现。但搜索空间是微观和宏观之间所有可能的映射函数,体量非常巨大。为了解决这个问题,Klein 等人重点研究了具有网络结构的复杂系统,将粗粒化问题转化为节点聚类,即找到一种方法将节点分组,使得簇级别的连接比原始网络具有更大的[[有效信息]]。虽然该方法假设底层节点动态是扩散(随机游走)的,它还是被广泛应用于各个领域。同时,现实世界中的的复杂系统具有更丰富的节点动态。对于一般的动态系统,即使给定节点分组,粗粒化策略仍然需要考虑如何将簇中所有节点的微观状态映射到簇的宏观状态,也需要在巨大的粗粒化策略函数空间上进行繁琐的搜索。详细方法请参看:[[复杂网络中的因果涌现]] |