更改

跳到导航 跳到搜索
添加620字节 、 2024年8月16日 (星期五)
第2行: 第2行:     
==历史==
 
==历史==
 +
===相关概念的发展===
 +
因果涌现理论是一种试图用基于因果的定量研究方法回答什么是涌现这一重要问题的,因此因果涌现的发展与人们对涌现和因果等概念的认识和发展密切相关。
 +
====涌现====
 +
[[涌现]]一直是[[复杂系统]]中的一个重要特性和研究对象,是许多关于[[复杂性]]本质以及宏微观组织之间关系讨论的核心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref name=":7">Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。尽管学者们在各个领域都指出存在涌现的现象<ref name=":7" /><ref>Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1996.</ref>,如鸟类的[[群体行为]]<ref>Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34.</ref>,大脑中的[[意识]]形成,以及大语言模型的[[涌现]]能力<ref>Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682.</ref>,但目前还没有对这一现象的被普遍认可的统一理解。以往对涌现有很多定性的研究,如 Bedau et al<ref name=":9">Bedau, M.A. Weak emergence. Philos. Perspect. 1997, 11, 375–399. [CrossRef] </ref><ref>Bedau, M. Downward causation and the autonomy of weak emergence. Principia Int. J. Epistemol. 2002, 6, 5–50. </ref>对涌现进行了分类,可以将涌现分为名义涌现<ref name=":10">Harré, R. The Philosophies of Science; Oxford University Press: New York, NY, USA , 1985.</ref><ref name=":11">Baas, N.A. Emergence, hierarchies, and hyperstructures. In Artificial Life III, SFI Studies in the Science of Complexity, XVII; Routledge: Abingdon, UK, 1994; pp. 515–537.</ref>、弱涌现<ref name=":9" /><ref>Newman, D.V. Emergence and strange attractors. Philos. Sci. 1996, 63, 245–261. [CrossRef]</ref>与强涌现<ref name=":12">Kim, J. ‘Downward causation’ in emergentism and nonreductive physicalism. In Emergence or Reduction; Walter de Gruyter: Berlin, Germany, 1992; pp. 119–138. </ref><ref name=":13">O’Connor, T. Emergent properties. Am. Philos. Q. 1994, 31, 91–104</ref>。名义涌现可以理解为能被宏观层级的模式或过程所拥有,但不能被其微观层级的组件所拥有的属性<ref name=":10" /><ref name=":11" />。[[弱涌现]]是指宏观层面的属性或过程是通过单个组件之间以复杂的方式相互作用产生的,由于[[计算不可约性]]的原理,它们不能轻易地简化为微观层面的属性。对于弱涌现来说,其模式产生的原因可能来自微观和宏观两个层面<ref name=":12" /><ref name=":13" />。因此,涌现的因果关系可能与微观因果关系并存。而对于[[强涌现]]来说存在很多的争论,它指的是宏观层面的属性,原则上不能简化为微观层面的属性,包括个体之间的相互作用。此外,Jochen Fromm进一步将强涌现解释为[[向下因果]]的[[因果效应]]<ref>Fromm, J. Types and forms of emergence. arXiv 2005, arXiv:nlin/0506028</ref>。考虑一个包含三个不同尺度的系统:微观、介观和宏观。[[向下因果]]关系是指从宏观层面向介观层面或从介观层面向微观层面的[[因果力]]。然而,关于[[向下因果]]关系本身的概念存在许多争议<ref>Bedau, M.A.; Humphreys, P. Emergence: Contemporary Readings in Philosophy and Science; MIT Press: Cambridge, MA, USA, 2008. </ref><ref>Yurchenko, S.B. Can there be a synergistic core emerging in the brain hierarchy to control neural activity by downward causation? TechRxiv 2023 . [CrossRef] </ref>。
   −
===涌现===
+
由这些早期研究可以看出,涌现与因果有着天然的深刻联系。
[[涌现]]一直是[[复杂系统]]中的一个重要特性和研究对象,是许多关于[[复杂性]]本质以及宏微观组织之间关系讨论的核心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref name=":7">Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。尽管学者们在各个领域都指出存在涌现的现象<ref name=":7" /><ref>Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1996.</ref>,如鸟类的[[群体行为]]<ref>Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34.</ref>,大脑中的[[意识]]形成,以及大语言模型的[[涌现]]能力<ref>Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682.</ref>,但目前还没有对这一现象的被普遍认可的统一理解。以往对涌现有很多定性的研究,如 Bedau et al<ref name=":9">Bedau, M.A. Weak emergence. Philos. Perspect. 1997, 11, 375–399. [CrossRef] </ref><ref>Bedau, M. Downward causation and the autonomy of weak emergence. Principia Int. J. Epistemol. 2002, 6, 5–50. </ref>对涌现进行了分类,可以将涌现分为名义涌现<ref name=":10">Harré, R. The Philosophies of Science; Oxford University Press: New York, NY, USA , 1985.</ref><ref name=":11">Baas, N.A. Emergence, hierarchies, and hyperstructures. In Artificial Life III, SFI Studies in the Science of Complexity, XVII; Routledge: Abingdon, UK, 1994; pp. 515–537.</ref>、弱涌现<ref name=":9" /><ref>Newman, D.V. Emergence and strange attractors. Philos. Sci. 1996, 63, 245–261. [CrossRef]</ref>与强涌现<ref name=":12">Kim, J. ‘Downward causation’ in emergentism and nonreductive physicalism. In Emergence or Reduction; Walter de Gruyter: Berlin, Germany, 1992; pp. 119–138. </ref><ref name=":13">O’Connor, T. Emergent properties. Am. Philos. Q. 1994, 31, 91–104</ref>。名义涌现可以理解为能被宏观层级的模式或过程所拥有,但不能被其微观层级的组件所拥有的属性<ref name=":10" /><ref name=":11" />。[[弱涌现]]是指宏观层面的属性或过程是通过单个组件之间以复杂的方式相互作用产生的,由于[[计算不可约性]]的原理,它们不能轻易地简化为微观层面的属性。对于弱涌现来说,其模式产生的原因可能来自微观和宏观两个层面<ref name=":12" /><ref name=":13" />。因此,涌现的因果关系可能与微观因果关系并存。而对于[[强涌现]]来说存在很多的争论,它指的是宏观层面的属性,原则上不能简化为微观层面的属性,包括个体之间的相互作用。此外,Jochen Fromm进一步将强涌现解释为[[向下因果]]的[[因果效应]]<ref>Fromm, J. Types and forms of emergence. arXiv 2005, arXiv:nlin/0506028</ref>。考虑一个包含三个不同尺度的系统:微观、介观和宏观。[[向下因果]]关系是指从宏观层面向介观层面或从介观层面向微观层面的[[因果力]]。然而,关于[[向下因果]]关系本身的概念存在许多争议<ref>Bedau, M.A.; Humphreys, P. Emergence: Contemporary Readings in Philosophy and Science; MIT Press: Cambridge, MA, USA, 2008. </ref><ref>Yurchenko, S.B. Can there be a synergistic core emerging in the brain hierarchy to control neural activity by downward causation? TechRxiv 2023 . [CrossRef] </ref>。
+
 
 +
====因果及其度量====
 +
所谓的因果就是指事件彼此之间的相互影响。因果不等于相关,这体现为,不仅当A发生时B会发生,而且如果A不发生,则B必然不发生。人们只有通过干预事件A,从而考察B的结果,才能探测A与B是否存在着因果关系。
   −
===因果及其度量===
   
随着近年来[[因果科学]]得到了进一步的发展,使得人们可以用数学框架来量化因果,[[因果]]描述的是一个动力学过程的[[因果效应]]<ref name=":14">Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref name=":8">Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。Judea Pearl<ref name=":8" />利用[[概率图模型]]来描述因果相互作用。Pearl用不同的模型来区分并量化了三个层次的因果关系,这里我们比较关注[[因果阶梯]]中的第二层:对输入分布做[[干预]]。此外,由于发现的因果关系背后的不确定性和模糊性,测量两个变量之间的因果效应程度是另一个重要问题。许多独立的历史研究已经解决了因果关系测量的问题。这些测量方法包括[[休谟]]的[[恒定连接概念]]<ref>Spirtes, P.; Glymour, C.; Scheines, R. Causation Prediction and Search, 2nd ed.; MIT Press: Cambridge, MA, USA, 2000.</ref>和基于值函数的方法<ref>Chickering, D.M. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2002, 2, 445–498.</ref>,Eells和Suppes将概率的提高作为因果关系的度量<ref>Eells, E. Probabilistic Causality; Cambridge University Press: Cambridge, UK, 1991; Volume 1</ref><ref>Suppes, P. A probabilistic theory of causality. Br. J. Philos. Sci. 1973, 24, 409–410.</ref>,以及Judea Pearl的[[因果度量]]等<ref name=":14" />。
 
随着近年来[[因果科学]]得到了进一步的发展,使得人们可以用数学框架来量化因果,[[因果]]描述的是一个动力学过程的[[因果效应]]<ref name=":14">Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref name=":8">Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。Judea Pearl<ref name=":8" />利用[[概率图模型]]来描述因果相互作用。Pearl用不同的模型来区分并量化了三个层次的因果关系,这里我们比较关注[[因果阶梯]]中的第二层:对输入分布做[[干预]]。此外,由于发现的因果关系背后的不确定性和模糊性,测量两个变量之间的因果效应程度是另一个重要问题。许多独立的历史研究已经解决了因果关系测量的问题。这些测量方法包括[[休谟]]的[[恒定连接概念]]<ref>Spirtes, P.; Glymour, C.; Scheines, R. Causation Prediction and Search, 2nd ed.; MIT Press: Cambridge, MA, USA, 2000.</ref>和基于值函数的方法<ref>Chickering, D.M. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2002, 2, 445–498.</ref>,Eells和Suppes将概率的提高作为因果关系的度量<ref>Eells, E. Probabilistic Causality; Cambridge University Press: Cambridge, UK, 1991; Volume 1</ref><ref>Suppes, P. A probabilistic theory of causality. Br. J. Philos. Sci. 1973, 24, 409–410.</ref>,以及Judea Pearl的[[因果度量]]等<ref name=":14" />。
   −
===因果涌现===
+
====因果涌现====
涌现和因果也是相互联系的:一方面,涌现是[[复杂系统 Complex Systems|复杂系统]]中各组成部分之间复杂的[[非线性相互作用]]的因果效应;另一方面,涌现特性也会对复杂系统中的个体产生因果关系。此外,以往会把很多东西归结为一些微观因素,但是宏观涌现出来的模式,往往无法归因到微观层面并进行解释,所以也就无法找到对应的原因。同时虽然有了[[涌现]]的定性分类,然而却无法定量的刻画涌现的发生。因此,可以借助因果来定量刻画涌现的发生。2013美国理论神经生物学家[[Erik hoel|Erik Hoel]]尝试将因果引入涌现的衡量,提出了因果涌现这一概念,并且使用[[有效信息]](Effective Information,简称EI)来量化系统动力学的因果性强弱<ref name=":0" /><ref name=":1" />。因果涌现可以描述为:当一个系统在宏观尺度相较其在微观尺度上具有更强的因果效应,此即产生了因果涌现。因果涌现很好的刻画了系统宏观和微观状态之间的区别与联系,同时把[[人工智能]]中的因果和复杂系统中的涌现这两个核心概念结合起来,因果涌现也为学者回答一系列的哲学问题提供一个定量化的视角。比如,可以借助因果涌现框架讨论生命系统或者社会系统中的自上而下的因果等特性。这里的自上而下因果指的是[[向下因果]]<ref name=":2" />,表示存在宏观到微观的因果效应。例如,壁虎断尾现象,当遇到危险时壁虎不征求尾巴的建议直接将自己的尾巴断掉,这里整体是因,尾巴是果,那么就存在一个整体指向个体的因果力。
+
涌现和因果也是相互联系的:一方面,涌现是[[复杂系统 Complex Systems|复杂系统]]中各组成部分之间复杂的[[非线性相互作用]]的因果效应;另一方面,涌现特性也会对复杂系统中的个体产生因果关系。此外,以往会把很多东西归结为一些微观因素,但是宏观涌现出来的模式,往往无法归因到微观层面并进行解释,所以也就无法找到对应的原因。同时虽然有了[[涌现]]的定性分类,然而却无法定量的刻画涌现的发生。因此,可以借助因果来定量刻画涌现的发生。2013美国理论神经生物学家[[Erik hoel|Erik Hoel]]尝试将因果引入涌现的衡量,提出了因果涌现这一概念,并且使用[[有效信息]](Effective Information,简称EI)来量化系统动力学的因果性强弱<ref name=":0" /><ref name=":1" />。因果涌现可以描述为:当一个系统在宏观尺度相较其在微观尺度上具有更强的因果效应,此即产生了因果涌现。因果涌现很好的刻画了系统宏观和微观状态之间的区别与联系,同时把[[人工智能]]中的因果和复杂系统中的涌现这两个核心概念结合起来,因果涌现也为学者回答一系列的哲学问题提供了一个定量化的视角。比如,可以借助因果涌现框架讨论生命系统或者社会系统中的自上而下的因果等特性。这里的自上而下因果指的是[[向下因果]]<ref name=":2" />,表示存在宏观到微观的因果效应。例如,壁虎断尾现象,当遇到危险时壁虎不征求尾巴的建议直接将自己的尾巴断掉,这里整体是因,尾巴是果,那么就存在一个整体指向部分的[[因果力]]。
    
===早期相关工作===
 
===早期相关工作===
786

个编辑

导航菜单