更改

跳到导航 跳到搜索
添加1,116字节 、 2024年8月18日 (星期日)
第37行: 第37行:  
另一种方法是从“整体大于部分之和”的角度来理解涌现<ref>Teo, Y.M.; Luong, B.L.; Szabo, C. Formalization of emergence in multi-agent systems. In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Montreal, QC, Canada, 19–22 May 2013; pp. 231–240. </ref><ref>Szabo, C.; Teo, Y.M. Formalization of weak emergence in multiagent systems. ACM Trans. Model. Comput. Simul. (TOMACS) 2015, 26, 1–25. [CrossRef] </ref>,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
 
另一种方法是从“整体大于部分之和”的角度来理解涌现<ref>Teo, Y.M.; Luong, B.L.; Szabo, C. Formalization of emergence in multi-agent systems. In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Montreal, QC, Canada, 19–22 May 2013; pp. 231–240. </ref><ref>Szabo, C.; Teo, Y.M. Formalization of weak emergence in multiagent systems. ACM Trans. Model. Comput. Simul. (TOMACS) 2015, 26, 1–25. [CrossRef] </ref>,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
   −
===后续工作===
+
===基于有效信息的因果涌现理论===
此外,在提出基于有效信息来判断因果涌现的发生以外,近年来也发展了一些其他的工作,Rosas等<ref name=":5" />从[[信息论|信息理论]]视角出发,提出一种基于[[信息分解]]方法来定义系统中的因果涌现,基于[[协同信息]]或者[[冗余信息]]来定量的刻画涌现。[[张江]]等人<ref name=":2">Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>基于[[奇异值分解]],提出了一套新的因果涌现理论。给定一个系统的马尔科夫转移矩阵,通过对它进行奇异值分解,将奇异值的<math>\alpha</math>次方的和定义为马尔科夫动力学的[[可逆性]]度量(<math>\Gamma_{\alpha}\equiv \sum_{i=1}^N\sigma_i^{\alpha}</math>),随后针对不同的动力学,定义清晰涌现和模糊涌现的指标。Barnett等<ref name=":6">Barnett L, Seth AK. Dynamical independence: discovering emergent macroscopic processes in complex dynamical systems. Physical Review E. 2023 Jul;108(1):014304.</ref>人基于[[转移熵]],通过判断宏观动力学与微观动力学进行解耦来判断涌现的发生。
+
历史上,第一个比较完整而明确的利用因果来定义涌现的定量理论当属[[Erik Hole]], [[Larissa Albantakis]]以及[[Giulio Tononi]]三人提出的因果涌现理论<ref name=":1">。该理论针对[[马尔科夫链]]定义所谓的因果涌现为:粗粒化后的马尔科夫链比原始的马尔科夫链具有更大的因果效应强度的现象。这里,因果效应强度是通过[[有效信息]]来衡量的,该指标是对[[互信息]]指标的一种改造,主要差别是将t时刻的状态变量进行了[[do干预]],干预成了[[均匀分布]](或[[最大熵分布]])。[[有效信息]]指标早在2003年就被[[Giulio Tononi]]在研究[[整合信息论]]的时候提出。
 +
 
 +
===基于信息分解的因果涌现理论===
 +
此外,2010年,Rosas等<ref name=":5" />从[[信息论|信息理论]]视角出发,提出一种基于[[信息分解]]方法来定义系统中的因果涌现,基于[[协同信息]]或者[[冗余信息]]来定量的刻画涌现。所谓的[[信息分解]]是分析[[复杂系统]]中各个变量复杂相互关系的一种新方法。
 +
 
 +
===近期工作===
 +
2024年,[[张江]]等人<ref name=":2">Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>基于[[奇异值分解]],提出了一套新的因果涌现理论。该理论的核心思想是指出所谓的因果涌现其实等价于动力学可逆性的涌现。给定一个系统的马尔科夫转移矩阵,通过对它进行奇异值分解,将奇异值的<math>\alpha</math>次方的和定义为马尔科夫动力学的[[可逆性]]度量(<math>\Gamma_{\alpha}\equiv \sum_{i=1}^N\sigma_i^{\alpha}</math>),该指标与[[有效信息]]具有高度的相关性,也可以用于刻画动力学的因果效应强度。根据奇异值的谱,该方法可以在不显式定义粗粒化方案的条件下,直接定义所谓'''清晰涌现'''和'''模糊涌现'''的概念。
 +
 
 +
Barnett等<ref name=":6">Barnett L, Seth AK. Dynamical independence: discovering emergent macroscopic processes in complex dynamical systems. Physical Review E. 2023 Jul;108(1):014304.</ref>人基于[[转移熵]],通过判断宏观动力学与微观动力学进行解耦来判断涌现的发生。
    
==因果涌现的量化==
 
==因果涌现的量化==
786

个编辑

导航菜单