更改

跳到导航 跳到搜索
删除3字节 、 2024年8月20日 (星期二)
第55行: 第55行:  
====Erik Hoel的因果涌现理论====
 
====Erik Hoel的因果涌现理论====
 
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,下图是对该理论框架的一个抽象,其中,横坐标表示时间,纵坐标表示尺度(Scale)。该框架可以看成是对同一个动力系统在微观和宏观两种尺度上的描述。其中,[math]f_m[/math]为微观动力学,[math]f_M[/math]为宏观动力学,二者通过一个粗粒化函数[math]\phi[/math]相连。在一般离散状态的马尔科夫动力系统中,[math]f_m[/math]和[math]f_M[/math]都是马尔科夫链,对[math]f_m[/math]进行[[马尔科夫链的简化]],就可以得到[math]f_M[/math]。[math]\mathcal{J}[/math]为[[有效信息]](<math> EI </math>)的度量。由于微观态可能具有更大的随机性,这导致微观动力学的[[因果性]]比较弱,所以通过对每一个时刻的微观态进行合理的粗粒化,就有可能得到因果性更强的宏观态。所谓的因果涌现,就是指当我们对微观态进行粗粒化的时候,宏观态动力学的[[有效信息]]量会增加这一现象,并且宏观态与微观态[[有效信息]]之差被定义为因果涌现的强度。
 
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,下图是对该理论框架的一个抽象,其中,横坐标表示时间,纵坐标表示尺度(Scale)。该框架可以看成是对同一个动力系统在微观和宏观两种尺度上的描述。其中,[math]f_m[/math]为微观动力学,[math]f_M[/math]为宏观动力学,二者通过一个粗粒化函数[math]\phi[/math]相连。在一般离散状态的马尔科夫动力系统中,[math]f_m[/math]和[math]f_M[/math]都是马尔科夫链,对[math]f_m[/math]进行[[马尔科夫链的简化]],就可以得到[math]f_M[/math]。[math]\mathcal{J}[/math]为[[有效信息]](<math> EI </math>)的度量。由于微观态可能具有更大的随机性,这导致微观动力学的[[因果性]]比较弱,所以通过对每一个时刻的微观态进行合理的粗粒化,就有可能得到因果性更强的宏观态。所谓的因果涌现,就是指当我们对微观态进行粗粒化的时候,宏观态动力学的[[有效信息]]量会增加这一现象,并且宏观态与微观态[[有效信息]]之差被定义为因果涌现的强度。
      
[[文件:因果涌现理论框架.png|因果涌现理论框架|alt=因果涌现理论抽象框架|居中|500x500像素|缩略图]]
 
[[文件:因果涌现理论框架.png|因果涌现理论框架|alt=因果涌现理论抽象框架|居中|500x500像素|缩略图]]
  −
      
[[有效信息]]最早由[[Tononi]]等人在[[整合信息论]]的研究中提出<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>。在因果涌现研究中,[[Erik Hoel]]等人将这种[[因果效应度量]]指标用于量化一个[[因果机制]]的因果性强弱。具体来说,使用干预操作对自变量做[[干预]],并考察在这一干预下,因和果变量之间的[[互信息]],这种互信息就是[[有效信息]],即因果机制的因果效应度量。
 
[[有效信息]]最早由[[Tononi]]等人在[[整合信息论]]的研究中提出<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>。在因果涌现研究中,[[Erik Hoel]]等人将这种[[因果效应度量]]指标用于量化一个[[因果机制]]的因果性强弱。具体来说,使用干预操作对自变量做[[干预]],并考察在这一干预下,因和果变量之间的[[互信息]],这种互信息就是[[有效信息]],即因果机制的因果效应度量。
2,515

个编辑

导航菜单