第103行: |
第103行: |
| Hoel提出的基于粗粒化的方法来量化系统中的因果涌现需要预先指定如何对原始的马尔科夫链进行粗粒化的策略。为了克服这个困难,Rosas等<ref name=":5" />从[[信息分解]]理论的视角出发,提出一种基于[[部分信息分解]]定义因果涌现的方法,并将因果涌现进一步区分了两种可能性:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation),其中因果解耦表示宏观态对其他宏观态的因果效应,向下因果表示宏观态对于微观元素的因果效应。因果解耦和向下因果的示意图如下图所示,其中微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,<math>V_t </math>表示宏观状态是<math>X_t </math>的随附特征,也就是<math>V_t </math>是通过对[math]X_t[/math]进行粗粒化后得到,<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。 | | Hoel提出的基于粗粒化的方法来量化系统中的因果涌现需要预先指定如何对原始的马尔科夫链进行粗粒化的策略。为了克服这个困难,Rosas等<ref name=":5" />从[[信息分解]]理论的视角出发,提出一种基于[[部分信息分解]]定义因果涌现的方法,并将因果涌现进一步区分了两种可能性:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation),其中因果解耦表示宏观态对其他宏观态的因果效应,向下因果表示宏观态对于微观元素的因果效应。因果解耦和向下因果的示意图如下图所示,其中微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,<math>V_t </math>表示宏观状态是<math>X_t </math>的随附特征,也就是<math>V_t </math>是通过对[math]X_t[/math]进行粗粒化后得到,<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。 |
| | | |
− | [[文件:向下因果与因果解耦2.png|居中|缩略图|因果解耦与向下因果]] | + | [[文件:向下因果与因果解耦2.png|居左|因果解耦与向下因果]] |
| | | |
| 该方法建立在Williams和Beer等<ref>Williams P L, Beer R D. Nonnegative decomposition of multivariate information[J]. arXiv preprint arXiv:10042515, 2010.</ref>提出的[[多元信息非负分解]]理论的基础之上,该文使用[[偏信息分解]](PID)将微观态和宏观态的互信息进行分解。不失一般性,假设我们的微观态为<math>X(X^1,X^2) </math>,即它是一个二维的变量,宏观态为<math>V </math>,则二者之间的[[互信息]]可以被分解为四个部分: | | 该方法建立在Williams和Beer等<ref>Williams P L, Beer R D. Nonnegative decomposition of multivariate information[J]. arXiv preprint arXiv:10042515, 2010.</ref>提出的[[多元信息非负分解]]理论的基础之上,该文使用[[偏信息分解]](PID)将微观态和宏观态的互信息进行分解。不失一般性,假设我们的微观态为<math>X(X^1,X^2) </math>,即它是一个二维的变量,宏观态为<math>V </math>,则二者之间的[[互信息]]可以被分解为四个部分: |
第120行: |
第120行: |
| 值得注意的是,对于方法一判断因果涌现的发生需要依赖宏观态<math>V_t </math>的选择,其中方法一是方法二的下界,所以,如果<math>Un(V_t;X_{t+1}| X_t\ )</math>大于0,则出现因果涌现。然而<math>V_t </math>的选择往往需要预先定义粗粒化函数,因此无法回避Erik Hoel因果涌现理论的局限。另外一种自然的想法就是使用第二种方法借助协同信息来判断因果涌现的发生,但是协同信息的计算是非常困难的,存在着组合爆炸问题。因此,第二种方法基于协同信息的计算往往也是不可行的。总之,这两种因果涌现的定量刻画方法都存在一些缺点,因此,更加合理的量化方法有待提出。 | | 值得注意的是,对于方法一判断因果涌现的发生需要依赖宏观态<math>V_t </math>的选择,其中方法一是方法二的下界,所以,如果<math>Un(V_t;X_{t+1}| X_t\ )</math>大于0,则出现因果涌现。然而<math>V_t </math>的选择往往需要预先定义粗粒化函数,因此无法回避Erik Hoel因果涌现理论的局限。另外一种自然的想法就是使用第二种方法借助协同信息来判断因果涌现的发生,但是协同信息的计算是非常困难的,存在着组合爆炸问题。因此,第二种方法基于协同信息的计算往往也是不可行的。总之,这两种因果涌现的定量刻画方法都存在一些缺点,因此,更加合理的量化方法有待提出。 |
| | | |
− | [[文件:因果解耦以及向下因果例子1.png|缩略图|500x500像素|居中|因果解耦以及向下因果例子]] | + | [[文件:因果解耦以及向下因果例子1.png|500x500像素|居左|因果解耦以及向下因果例子]] |
| 文中作者列举了一个前后两个时间序列数据的奇偶是否相同的例子来说明什么时候发生[[因果解耦]]、[[向下因果]]以及[[因果涌现]],如上图所示。当第二个判断条件中只有第一项成立时是用来判断向下因果条件,只有第二项成立时是用来判断因果解耦条件,两种同时成立时用来判断因果涌现条件。这里,<math>X_t=(X_t^1,…,X_t^n )\in \left\{0,1\right\}^n </math>,宏观态是微观输入的异或结果。 | | 文中作者列举了一个前后两个时间序列数据的奇偶是否相同的例子来说明什么时候发生[[因果解耦]]、[[向下因果]]以及[[因果涌现]],如上图所示。当第二个判断条件中只有第一项成立时是用来判断向下因果条件,只有第二项成立时是用来判断因果解耦条件,两种同时成立时用来判断因果涌现条件。这里,<math>X_t=(X_t^1,…,X_t^n )\in \left\{0,1\right\}^n </math>,宏观态是微观输入的异或结果。 |
| | | |