更改

跳到导航 跳到搜索
删除2字节 、 2024年8月25日 (星期日)
第286行: 第286行:     
这里[math]z\sim\mathcal{Ν}\left (0,I_{p-q}\right )[/math]为一个[math]p-q[/math]维随机向量,服从标准正态分布。
 
这里[math]z\sim\mathcal{Ν}\left (0,I_{p-q}\right )[/math]为一个[math]p-q[/math]维随机向量,服从标准正态分布。
      
然而,由于优化维度平均[[有效信息]]存在困难,文章<ref name="NIS" />并没有直接优化{{EquationRef{1}}},而是采用了一种取巧的方法。为了解决这个问题,作者将优化过程分为两个阶段,第一个阶段为在给定宏观尺度<math>q </math>的情况下最小化微观态预测误差,即<math>\min _{\phi, f_q, \phi^{\dagger}}\left\|\phi^{\dagger}(Y(t+1))-X_{t+1}\right\|<\epsilon </math>并得到最优的宏观态动力学[math]f_q^\ast[/math];第二阶段为搜索超参<math>q </math>,使得有效信息[math]\mathcal{J}[/math]能够最大化,即<math>\max_{q}\mathcal{J}(f_{q}^\ast) </math>  
 
然而,由于优化维度平均[[有效信息]]存在困难,文章<ref name="NIS" />并没有直接优化{{EquationRef{1}}},而是采用了一种取巧的方法。为了解决这个问题,作者将优化过程分为两个阶段,第一个阶段为在给定宏观尺度<math>q </math>的情况下最小化微观态预测误差,即<math>\min _{\phi, f_q, \phi^{\dagger}}\left\|\phi^{\dagger}(Y(t+1))-X_{t+1}\right\|<\epsilon </math>并得到最优的宏观态动力学[math]f_q^\ast[/math];第二阶段为搜索超参<math>q </math>,使得有效信息[math]\mathcal{J}[/math]能够最大化,即<math>\max_{q}\mathcal{J}(f_{q}^\ast) </math>  
第305行: 第304行:  
I\left(Y_t;Y_{t+1}\right)\approx I\left(X_t;X_{t+1}\right)
 
I\left(Y_t;Y_{t+1}\right)\approx I\left(X_t;X_{t+1}\right)
 
</math>
 
</math>
      
[[NIS]]框架与前面章节中提到的计算力学存在很多相似之处,NIS可以被视为一种<math>\epsilon - machine </math>。[[计算力学]]中的所有历史过程构成的集合<math>\overleftarrow{S}</math>可以看作是微观状态,所有<math>R \in \mathcal{R} </math>表示宏观状态,函数<math>\eta </math>可以理解为一种粗粒化函数,<math>\epsilon </math>可以理解为一种有效的粗粒化策略,<math>T</math> 对应于有效的宏观动力学。最小随机性特征表征了宏观动力学的确定性,在因果涌现中可以用[[有效信息]]衡量。当整个框架训练足够充分的时候,可以精确地预测未来的微观状态时,编码的宏观状态收敛到有效状态,而有效状态可以被视为计算力学中的[[因果态]]。
 
[[NIS]]框架与前面章节中提到的计算力学存在很多相似之处,NIS可以被视为一种<math>\epsilon - machine </math>。[[计算力学]]中的所有历史过程构成的集合<math>\overleftarrow{S}</math>可以看作是微观状态,所有<math>R \in \mathcal{R} </math>表示宏观状态,函数<math>\eta </math>可以理解为一种粗粒化函数,<math>\epsilon </math>可以理解为一种有效的粗粒化策略,<math>T</math> 对应于有效的宏观动力学。最小随机性特征表征了宏观动力学的确定性,在因果涌现中可以用[[有效信息]]衡量。当整个框架训练足够充分的时候,可以精确地预测未来的微观状态时,编码的宏观状态收敛到有效状态,而有效状态可以被视为计算力学中的[[因果态]]。
2,444

个编辑

导航菜单