更改

跳到导航 跳到搜索
添加77字节 、 2024年8月31日 (星期六)
第101行: 第101行:  
[[文件:因果涌现理论.png|因果涌现理论框架|alt=因果涌现理论抽象框架|居左|400x400像素]]
 
[[文件:因果涌现理论.png|因果涌现理论框架|alt=因果涌现理论抽象框架|居左|400x400像素]]
    +
 +
=====有效信息=====
 
[[有效信息]](<math> EI </math>)最早由[[Tononi]]等人在[[整合信息论]]的研究中提出<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>。在因果涌现研究中,[[Erik Hoel]]等人将这种[[因果效应度量]]指标用于量化一个[[因果机制]]的因果性强弱。
 
[[有效信息]](<math> EI </math>)最早由[[Tononi]]等人在[[整合信息论]]的研究中提出<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>。在因果涌现研究中,[[Erik Hoel]]等人将这种[[因果效应度量]]指标用于量化一个[[因果机制]]的因果性强弱。
   第118行: 第120行:  
有效信息可以拆解为'''确定性'''和'''简并性'''两部分,还可以通过引入归一化从而消除状态空间规模大小的影响。关于有效信息的详细信息请参看词条:[[有效信息]]。
 
有效信息可以拆解为'''确定性'''和'''简并性'''两部分,还可以通过引入归一化从而消除状态空间规模大小的影响。关于有效信息的详细信息请参看词条:[[有效信息]]。
    +
=====因果涌现度量=====
 
我们可以通过比较系统中宏微观动力学的有效信息大小来判断因果涌现的发生:
 
我们可以通过比较系统中宏微观动力学的有效信息大小来判断因果涌现的发生:
   第125行: 第128行:     
其中<math>CE</math>为因果涌现强度。如果宏观动力学的有效信息大于微观动力学的有效信息(也就是<math>CE>0</math>),那么我们认为在该粗粒化基础上宏观动力学具有因果涌现特性。
 
其中<math>CE</math>为因果涌现强度。如果宏观动力学的有效信息大于微观动力学的有效信息(也就是<math>CE>0</math>),那么我们认为在该粗粒化基础上宏观动力学具有因果涌现特性。
 +
 +
=====具体实例=====
    
在文献<ref name=":0"/>中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵([math]f_m[/math])的例子,如下面左图所示。其中前7个状态之间等概率转移,最后一个状态是独立的,只能转变为自身的状态。
 
在文献<ref name=":0"/>中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵([math]f_m[/math])的例子,如下面左图所示。其中前7个状态之间等概率转移,最后一个状态是独立的,只能转变为自身的状态。
786

个编辑

导航菜单