第151行: |
第151行: |
| | | |
| ====Rosas的因果涌现理论==== | | ====Rosas的因果涌现理论==== |
− | Rosas等<ref name=":5" />从[[信息分解]]理论的视角出发,提出一种基于[[部分信息分解]]定义因果涌现的方法,并将因果涌现进一步区分了两种可能性:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation),其中因果解耦表示宏观态对其他宏观态的因果效应,向下因果表示宏观态对于微观元素的因果效应。因果解耦和向下因果的示意图如下图所示,其中微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,<math>V_t </math>表示宏观状态是<math>X_t </math>的随附特征,也就是<math>V_t </math>是通过对[math]X_t[/math]进行粗粒化后得到,<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。 | + | Rosas等<ref name=":5" />从[[信息分解]]理论的视角出发,提出一种基于[[整合信息分解]]定义因果涌现的方法,并将因果涌现进一步区分为:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation)两部分。其中因果解耦表示当前时刻宏观态对下一时刻宏观态的因果效应,向下因果表示上一时刻宏观态对下一时刻微观态的因果效应。因果解耦和向下因果的示意图如下图所示,其中微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,宏观状态是<math>V_t </math>,它由微观态变量<math>X_t </math>粗粒化而来,因而是<math>X_t </math>的随附特征(Supervenience),<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。 |
| | | |
| [[文件:向下因果与因果解耦2.png|居左|400x400像素|因果解耦与向下因果]] | | [[文件:向下因果与因果解耦2.png|居左|400x400像素|因果解耦与向下因果]] |
| | | |
− | 该方法建立在Williams和Beer等<ref>Williams P L, Beer R D. Nonnegative decomposition of multivariate information[J]. arXiv preprint arXiv:10042515, 2010.</ref>提出的[[多元信息非负分解]]理论的基础之上,该文使用[[偏信息分解]](PID)将微观态和宏观态的互信息进行分解。不失一般性,假设我们的微观态为<math>X(X^1,X^2) </math>,即它是一个二维的变量,宏观态为<math>V </math>,则二者之间的[[互信息]]可以被分解为四个部分: | + | =====部分信息分解===== |
| + | |
| + | 该方法建立在Williams和Beer等<ref>Williams P L, Beer R D. Nonnegative decomposition of multivariate information[J]. arXiv preprint arXiv:10042515, 2010.</ref>提出的[[多元信息非负分解]]理论的基础之上,该文使用[[部分信息分解]](PID)将微观态和宏观态的互信息进行分解。 |
| + | |
| + | 不失一般性,假设我们的微观态为<math>X(X^1,X^2) </math>,即它是一个二维的变量,宏观态为<math>V </math>,则二者之间的[[互信息]]可以被分解为四个部分: |
| | | |
| <math>I(X^1,X^2;V)=Red(X^1,X^2;V)+Un(X^1;V│X^2 )+Un(X^2;V│X^1 )+Syn(X^1,X^2;V) </math> | | <math>I(X^1,X^2;V)=Red(X^1,X^2;V)+Un(X^1;V│X^2 )+Un(X^2;V│X^1 )+Syn(X^1,X^2;V) </math> |
| | | |
| 其中<math>Red(X^1,X^2;V) </math>表示[[冗余信息]],是指两个微观态<math>X^1 </math>和<math>X^2 </math>重复地给宏观态<math>V </math>提供的信息;<math>Un(X^1;V│X^2 ) </math>和<math>Un(X^2;V│X^1 ) </math>表示[[特有信息]],是指每一个微观态变量单独给宏观态提供的信息;<math>Syn(X^1,X^2;V) </math>表示[[协同信息]],是指所有微观态<math>X </math>联合在一起给宏观态<math>V </math>提供的信息。 | | 其中<math>Red(X^1,X^2;V) </math>表示[[冗余信息]],是指两个微观态<math>X^1 </math>和<math>X^2 </math>重复地给宏观态<math>V </math>提供的信息;<math>Un(X^1;V│X^2 ) </math>和<math>Un(X^2;V│X^1 ) </math>表示[[特有信息]],是指每一个微观态变量单独给宏观态提供的信息;<math>Syn(X^1,X^2;V) </math>表示[[协同信息]],是指所有微观态<math>X </math>联合在一起给宏观态<math>V </math>提供的信息。 |
| + | |
| + | =====因果涌现定义===== |
| | | |
| 然而,PID框架只能分解关于多个源变量和一个目标变量之间的互信息,Rosas扩展了该框架,提出整合信息分解方法<math>\Phi ID </math><ref>P. A. Mediano, F. Rosas, R. L. Carhart-Harris, A. K. Seth, A. B. Barrett, Beyond integrated information: A taxonomy of information dynamics phenomena, arXiv preprint arXiv:1909.02297 (2019).</ref>来处理多个源变量和多个目标变量之间的互信息,还可以用来分解不同时刻间的互信息,作者基于分解后的信息提出了两种因果涌现的定义方法: | | 然而,PID框架只能分解关于多个源变量和一个目标变量之间的互信息,Rosas扩展了该框架,提出整合信息分解方法<math>\Phi ID </math><ref>P. A. Mediano, F. Rosas, R. L. Carhart-Harris, A. K. Seth, A. B. Barrett, Beyond integrated information: A taxonomy of information dynamics phenomena, arXiv preprint arXiv:1909.02297 (2019).</ref>来处理多个源变量和多个目标变量之间的互信息,还可以用来分解不同时刻间的互信息,作者基于分解后的信息提出了两种因果涌现的定义方法: |
| | | |
− | 1)当[[特有信息]]<math>Un(V_t;X_{t+1}| X_t^1,\ldots,X_t^n\ )>0 </math>,表示当前时刻的宏观态<math>V_t </math>能超过当前时刻的微观态<math>X_t </math>给下一时刻的整体系统<math>X_{t+1} </math>提供更多信息,这时候系统存在因果涌现; | + | 1)当[[特有信息]]<math>Un(V_t;X_{t+1}| X_t^1,\ldots,X_t^n\ )>0 </math>,表示当前时刻的宏观态<math>V_t </math>能超过当前时刻的微观态<math>X_t </math>给下一时刻的整体系统<math>X_{t+1} </math>提供更多信息,这时候系统存在着因果涌现; |
| + | |
| + | 2)第二种方法绕开了选择特定的宏观态<math>V_t </math>,仅仅基于系统当前时刻的微观态<math>X_t </math>和下一时刻的微观态<math>X_{t+1} </math>之间的[[协同信息]]定义因果涌现,当协同信息<math>Syn(X_t^1,…,X_t^n;X_{t+1}^1,…,X_{t+1}^n )>0 </math>,系统发生了因果涌现。 |
| | | |
− | 2)绕开了选择特定的宏观态<math>V_t </math>,仅仅基于系统当前时刻的微观态<math>X_t </math>和下一时刻的微观态<math>X_{t+1} </math>之间的[[协同信息]]定义因果涌现,当协同信息<math>Syn(X_t^1,…,X_t^n;X_{t+1}^1,…,X_{t+1}^n )>0 </math>,系统发生了因果涌现。其中<math>Syn(X_t;X_{t+1}\ ) ≥ Un(V_t;X_{t+1}| X_t\ )</math>衡成立。
| + | 值得注意的是,对于方法一判断因果涌现的发生需要依赖宏观态<math>V_t </math>的选择,其中方法一是方法二的下界。这是因为,<math>Syn(X_t;X_{t+1}\ ) ≥ Un(V_t;X_{t+1}| X_t\ )</math>衡成立。所以,如果<math>Un(V_t;X_{t+1}| X_t\ )</math>大于0,则系统出现因果涌现。然而<math>V_t </math>的选择往往需要预先定义粗粒化函数,因此无法回避[[Erik Hoel因果涌现理论]]的局限。另外一种自然的想法就是使用第二种方法借助协同信息来判断因果涌现的发生,但是协同信息的计算是非常困难的,存在着组合爆炸问题。因此,第二种方法基于协同信息的计算往往也是不可行的。总之,这两种因果涌现的定量刻画方法都存在一些弱点,因此,有待提出更加合理的量化方法。 |
| | | |
− | 值得注意的是,对于方法一判断因果涌现的发生需要依赖宏观态<math>V_t </math>的选择,其中方法一是方法二的下界,所以,如果<math>Un(V_t;X_{t+1}| X_t\ )</math>大于0,则出现因果涌现。然而<math>V_t </math>的选择往往需要预先定义粗粒化函数,因此无法回避Erik Hoel因果涌现理论的局限。另外一种自然的想法就是使用第二种方法借助协同信息来判断因果涌现的发生,但是协同信息的计算是非常困难的,存在着组合爆炸问题。因此,第二种方法基于协同信息的计算往往也是不可行的。总之,这两种因果涌现的定量刻画方法都存在一些缺点,因此,更加合理的量化方法有待提出。
| + | =====具体实例===== |
| | | |
| [[文件:因果解耦以及向下因果例子1.png|500x500像素|居左|因果解耦以及向下因果例子]] | | [[文件:因果解耦以及向下因果例子1.png|500x500像素|居左|因果解耦以及向下因果例子]] |
| | | |
− | 文中作者列举了一个前后两个时间序列数据的奇偶是否相同的例子来说明什么时候发生[[因果解耦]]、[[向下因果]]以及[[因果涌现]],如上图所示。当第二个判断条件中只有第一项成立时是用来判断向下因果条件,只有第二项成立时是用来判断因果解耦条件,两项同时成立时用来判断因果涌现条件。这里,<math>p_{X_{t+1}|X_t}(x_{t+1}|x_t)</math>表示动力学关系,<math>X_t=(x_t^1,…,x_t^n )\in \left\{0,1\right\}^n </math>,<math>n</math>表示序列的长度,如果<math>\sum_{j=1}^n x^j_t</math>是偶数或者0时<math>\oplus^n_{j=1} x^j_t:=1</math>,反之<math>\oplus^n_{j=1} x^j_t:=0</math>,<math>\gamma</math>表示<math>t</math>和<math>t+1</math>时刻整体奇偶性相同的概率,宏观态是微观输入的异或结果。
| + | 文<ref name=":5" />中作者列举了一个具体的例子,来说明什么时候发生[[因果解耦]]、[[向下因果]]以及[[因果涌现]],该例子是通过检查前后两个时刻,变量的奇偶是否相同来定义下一时刻变量取不同值的概率。如上图所示,当第二个判断条件中只有第一项成立时该系统发生向下因果条件,只有第二项成立时系统发生因果解耦,两项同时成立时则称系统发生因果涌现。这里,<math>p_{X_{t+1}|X_t}(x_{t+1}|x_t)</math>表示动力学关系,<math>X_t=(x_t^1,…,x_t^n )\in \left\{0,1\right\}^n </math>,<math>n</math>表示序列的长度,如果<math>\sum_{j=1}^n x^j_t</math>是偶数或者0时<math>\oplus^n_{j=1} x^j_t:=1</math>,反之<math>\oplus^n_{j=1} x^j_t:=0</math>,<math>\gamma</math>表示<math>t</math>和<math>t+1</math>时刻整体奇偶性相同的概率,宏观态是微观输入的异或结果。 |
| | | |
| ====基于可逆性的因果涌现理论==== | | ====基于可逆性的因果涌现理论==== |