第181行: |
第181行: |
| 文<ref name=":5" />中作者列举了一个具体的例子,来说明什么时候发生[[因果解耦]]、[[向下因果]]以及[[因果涌现]],该例子是通过检查前后两个时刻,变量的奇偶是否相同来定义下一时刻变量取不同值的概率。如上图所示,当第二个判断条件中只有第一项成立时该系统发生向下因果条件,只有第二项成立时系统发生因果解耦,两项同时成立时则称系统发生因果涌现。这里,<math>p_{X_{t+1}|X_t}(x_{t+1}|x_t)</math>表示动力学关系,<math>X_t=(x_t^1,…,x_t^n )\in \left\{0,1\right\}^n </math>,<math>n</math>表示序列的长度,如果<math>\sum_{j=1}^n x^j_t</math>是偶数或者0时<math>\oplus^n_{j=1} x^j_t:=1</math>,反之<math>\oplus^n_{j=1} x^j_t:=0</math>,<math>\gamma</math>表示<math>t</math>和<math>t+1</math>时刻整体奇偶性相同的概率,宏观态的概率分布是微观态的异或计算的结果。 | | 文<ref name=":5" />中作者列举了一个具体的例子,来说明什么时候发生[[因果解耦]]、[[向下因果]]以及[[因果涌现]],该例子是通过检查前后两个时刻,变量的奇偶是否相同来定义下一时刻变量取不同值的概率。如上图所示,当第二个判断条件中只有第一项成立时该系统发生向下因果条件,只有第二项成立时系统发生因果解耦,两项同时成立时则称系统发生因果涌现。这里,<math>p_{X_{t+1}|X_t}(x_{t+1}|x_t)</math>表示动力学关系,<math>X_t=(x_t^1,…,x_t^n )\in \left\{0,1\right\}^n </math>,<math>n</math>表示序列的长度,如果<math>\sum_{j=1}^n x^j_t</math>是偶数或者0时<math>\oplus^n_{j=1} x^j_t:=1</math>,反之<math>\oplus^n_{j=1} x^j_t:=0</math>,<math>\gamma</math>表示<math>t</math>和<math>t+1</math>时刻整体奇偶性相同的概率,宏观态的概率分布是微观态的异或计算的结果。 |
| | | |
− | ====基于可逆性的因果涌现理论==== | + | ====基于奇异值分解的因果涌现理论==== |
| | | |
− | Erik Hoel的因果涌现理论存在着需要指定粗粒化策略的问题,Rosas的信息分解理论并没有完全解决,因此,[[张江]]等人进一步提出了<ref name=":2">Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>基于奇异值分解和动力学近似可逆性的因果涌现理论。 | + | [[Erik Hoel的因果涌现理论]]存在着需要事先指定粗粒化策略的问题,Rosas的信息分解理论并没有完全解决该问题,因此,[[张江]]等人进一步提出了<ref name=":2">Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>基于[[奇异值分解的因果涌现理论]]。 |
| | | |
− | 给定一个系统的马尔科夫转移矩阵<math>P</math>,我们可以对它进行[[奇异值分解]],得到两个正交且归一化矩阵<math>U</math>和<math>V</math>,和一个对角阵<math>\Sigma</math>:<math>P= U\Sigma V^T</math>,其中[math]\Sigma=diag(\sigma_1,\sigma_2,\cdots,\sigma_N)[/math],其中[math]\sigma_1\geq\sigma_2\geq\cdots\sigma_N[/math]为<math>P</math>的奇异值,并且按照从大到小的顺序排列,<math>N</math>为<math>P</math>的状态数量。
| |
| | | |
| + | =====马尔科夫链的奇异值分解===== |
| + | |
| + | 给定一个系统的[[马尔科夫转移矩阵]]<math>P</math>,我们可以对它进行[[奇异值分解]],得到两个正交且归一化矩阵<math>U</math>和<math>V</math>,和一个对角阵<math>\Sigma</math>:<math>P= U\Sigma V^T</math>,其中[math]\Sigma=diag(\sigma_1,\sigma_2,\cdots,\sigma_N)[/math],其中[math]\sigma_1\geq\sigma_2\geq\cdots\sigma_N[/math]为<math>P</math>的奇异值,并且按照从大到小的顺序排列,<math>N</math>为<math>P</math>的状态数量。 |
| + | |
| + | |
| + | =====近似动力学可逆性与有效信息===== |
| 我们可以将奇异值的<math>\alpha</math>次方之和定义为马尔科夫动力学的近似可逆性度量,即: | | 我们可以将奇异值的<math>\alpha</math>次方之和定义为马尔科夫动力学的近似可逆性度量,即: |
| <math> | | <math> |
第201行: |
第206行: |
| | | |
| 而且,在一定程度上可以用[math]\Gamma_{\alpha}[/math]替代EI对马尔科夫链的因果效应程度进行度量。 | | 而且,在一定程度上可以用[math]\Gamma_{\alpha}[/math]替代EI对马尔科夫链的因果效应程度进行度量。 |
| + | |
| + | =====无需粗粒化的因果涌现量化===== |
| | | |
| 如果<math>P</math>的秩为<math>r</math>,即从第<math>r+1</math>个奇异值开始,奇异值都为0,则我们称动力学<math>P</math>存在着'''清晰的因果涌现'''(Clear Causal Emergence),并且因果涌现的数值为:<math> | | 如果<math>P</math>的秩为<math>r</math>,即从第<math>r+1</math>个奇异值开始,奇异值都为0,则我们称动力学<math>P</math>存在着'''清晰的因果涌现'''(Clear Causal Emergence),并且因果涌现的数值为:<math> |
第209行: |
第216行: |
| | | |
| 总结来看,该定量化因果涌现的方法的好处在于,它可以不依赖于具体的粗粒化策略,因而可以更加客观地量化因果涌现。该方法的缺点是,若要计算[math]\Gamma_{\alpha}[/math],需要事先对<math>P</math>进行[[SVD分解]],因而计算复杂度为[math]O(N^3)[/math],因而比<math>EI</math>的计算复杂度高。而且,[math]\Gamma_{\alpha}[/math]不能显式地分解为确定度和简并度两个分量。 | | 总结来看,该定量化因果涌现的方法的好处在于,它可以不依赖于具体的粗粒化策略,因而可以更加客观地量化因果涌现。该方法的缺点是,若要计算[math]\Gamma_{\alpha}[/math],需要事先对<math>P</math>进行[[SVD分解]],因而计算复杂度为[math]O(N^3)[/math],因而比<math>EI</math>的计算复杂度高。而且,[math]\Gamma_{\alpha}[/math]不能显式地分解为确定度和简并度两个分量。 |
| + | |
| + | =====具体实例===== |
| | | |
| [[文件:Gamma例子.png|居左|400x400像素|<math>EI</math>与<math>\Gamma</math>对比]] | | [[文件:Gamma例子.png|居左|400x400像素|<math>EI</math>与<math>\Gamma</math>对比]] |
| | | |
− | 文中作者通过实例对比了状态转移矩阵的<math>EI</math>和<math>\Gamma_{1}</math>。对比图a,b,我们发现对于不同的状态转移矩阵,<math>EI</math>降低的时候,<math>\Gamma_1</math>也同步降低。进一步,图c和d是对比粗粒化前后的效果,其中图d是对图c状态转移矩阵的粗粒化(将前三个状态归并为一个宏观态)。由于宏观状态转移矩阵图d是一个[[确定性系统]],因此,归一化后的<math>EI</math>,<math>eff\equiv EI/\log N</math>和归一化后的[math]\Gamma_1[/math]:<math>\gamma_1\equiv \Gamma_1/N</math>都达到了最大值1。
| + | 作者给出了两个具体马尔科夫链的例子,该马氏链的状态转移矩阵如图所示。我们可以对比该马氏链的<math>EI</math>和[[近似动力学可逆性]]<math>\Gamma_{\alpha=1}</math>。对比图a,b,我们发现对于不同的状态转移矩阵,<math>EI</math>降低的时候,<math>\Gamma_1</math>也同步降低。进一步,图c和d是对比粗粒化前后的效果,其中图d是对图c状态转移矩阵的粗粒化(将前三个状态归并为一个宏观态)。由于宏观状态转移矩阵图d是一个[[确定性系统]],因此,归一化后的<math>EI</math>,<math>eff\equiv EI/\log N</math>和归一化后的[math]\Gamma_1[/math]:<math>\gamma_1\equiv \Gamma_1/N</math>都达到了最大值1。 |
| | | |
| ====动力学解耦(Dynamic independence)==== | | ====动力学解耦(Dynamic independence)==== |