更改

跳到导航 跳到搜索
删除2字节 、 2024年8月31日 (星期六)
第272行: 第272行:  
[[Rosas的因果涌现理论]]包含了基于[[协同信息]]的量化方法和基于[[特有信息]]的量化方法,其中第二种方法可以绕开多变量的组合爆炸问题,但是依赖粗粒化方法和宏观态变量<math>V</math>的选择。为了解决这个问题,作者给出了两种解决方案,一种是通过研究者指定一个宏观态<math>V</math>,另一种是基于机器学习的方法,通过最大化<math>\mathrm{\Psi} </math>,让系统自动学习到宏观态变量<math>V</math>。下面我们分别介绍这两种方法:
 
[[Rosas的因果涌现理论]]包含了基于[[协同信息]]的量化方法和基于[[特有信息]]的量化方法,其中第二种方法可以绕开多变量的组合爆炸问题,但是依赖粗粒化方法和宏观态变量<math>V</math>的选择。为了解决这个问题,作者给出了两种解决方案,一种是通过研究者指定一个宏观态<math>V</math>,另一种是基于机器学习的方法,通过最大化<math>\mathrm{\Psi} </math>,让系统自动学习到宏观态变量<math>V</math>。下面我们分别介绍这两种方法:
   −
=====互信息近似=====
+
=====基于互信息近似的方法=====
 
[[Rosas的因果涌现理论]]虽然已经给出了因果涌现的严格定义,但在计算中涉及到很多变量的组合爆炸问题,因此难以将该方法应用于实际系统。为了解决这个问题,Rosas等绕开了特有信息和协同信息的精确计算<ref name=":5" />,而提了一种只需要计算[[互信息]]的近似公式,并推导出一个判定因果涌现发生的充分条件。
 
[[Rosas的因果涌现理论]]虽然已经给出了因果涌现的严格定义,但在计算中涉及到很多变量的组合爆炸问题,因此难以将该方法应用于实际系统。为了解决这个问题,Rosas等绕开了特有信息和协同信息的精确计算<ref name=":5" />,而提了一种只需要计算[[互信息]]的近似公式,并推导出一个判定因果涌现发生的充分条件。
   第281行: 第281行:  
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
 
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
   −
其中<math>X_t^j </math>表示第j维t时刻的微观变量,<math>V_t ; V_{t+1} </math>分别代表两个连续时间的宏观状态变量。Rosas等人定义,当<math>\mathrm{\Psi}>0 </math>时,系统发生涌现;但是当<math>\mathrm{\Psi}<0 </math>,我们不能确定<math>V </math>是否发生涌现。
+
其中<math>X_t^j </math>表示第j维t时刻的微观变量,<math>V_t ; V_{t+1} </math>分别代表两个连续时间的宏观状态变量。Rosas等人定义,当<math>\mathrm{\Psi}>0 </math>时,系统发生涌现;但是当<math>\mathrm{\Psi}<0 </math>,我们不能确定<math>V </math>是否发生涌现,这是因为该条件仅仅是因果涌现发生的充分条件。
    
* 判断[[向下因果]]的指标:
 
* 判断[[向下因果]]的指标:
第287行: 第287行:  
<math>\Delta_{t, t+1}(V):=\max _j\left(I\left(V_t ; X_{t+1}^j\right)-\sum_i I\left(X_t^i ; X_{t+1}^j\right)\right) </math>
 
<math>\Delta_{t, t+1}(V):=\max _j\left(I\left(V_t ; X_{t+1}^j\right)-\sum_i I\left(X_t^i ; X_{t+1}^j\right)\right) </math>
   −
当<math>\mathrm{\Delta}>0 </math>时,宏观状态<math>V </math>发生[[向下因果]]。
+
当<math>\mathrm{\Delta}>0 </math>时,宏观状态<math>V </math>对微观变量<math>X</math>存在[[向下因果]]。
    
* 判断[[因果解耦]]的指标:
 
* 判断[[因果解耦]]的指标:
第293行: 第293行:  
<math>\Gamma_{t, t+1}(V):=\max _j I\left(V_t ; X_{t+1}^j\right) </math>
 
<math>\Gamma_{t, t+1}(V):=\max _j I\left(V_t ; X_{t+1}^j\right) </math>
   −
当<math>\mathrm{\Delta}>0 </math>且<math>\mathrm{\Gamma}=0 </math>时,宏观状态<math>V </math>发生因果涌现且发生[[因果解耦]]。
+
当<math>\mathrm{\Delta}>0 </math>且<math>\mathrm{\Gamma}=0 </math>时,系统发生因果涌现且存在[[因果解耦]]。
    
之所以我们可以使用<math>\mathrm{\Psi} </math>来识别因果涌现的发生,是因为<math>\mathrm{\Psi} </math>又是特有信息的下界,我们有如下关系:
 
之所以我们可以使用<math>\mathrm{\Psi} </math>来识别因果涌现的发生,是因为<math>\mathrm{\Psi} </math>又是特有信息的下界,我们有如下关系:
第299行: 第299行:  
<math>Un(V_t;X_{t+1}|X_t)  ≥ I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) + Red(V_t, V_{t+1};X_t) </math>
 
<math>Un(V_t;X_{t+1}|X_t)  ≥ I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) + Red(V_t, V_{t+1};X_t) </math>
   −
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以我们提出一个充分非必要条件:当<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。
+
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以我们可以据此提出一个充分非必要条件:当<math>\Psi_{t, t+1}(V) > 0 </math>
   −
总结来看,该方法因为是基于互信息的,所以计算比较方便,且对系统的动力学没有马尔科夫性的假设和要求。但是,该理论也存在很多缺点:1)该方法提出的三个指标 :<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于[[互信息]]的计算而没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法依赖宏观变量的选择,而不同的选择会对结果造成不同的显著影响;3)当系统具有大量冗余信息或具有许多变量时,该方法的[[计算复杂度]]仍然很高,由于<math>\Psi </math>作为近似条件,高维系统中误差非常大,很容易得到负值,从而无法判断是否有因果涌现发生。因此,该方法不是一种最优的方法,基于数据驱动的[[神经信息压缩]]方法应运而生。
+
总结来看,该方法因为是基于互信息的,所以计算比较方便,且对系统的动力学没有马尔科夫性的假设和要求。但是,该理论也存在很多缺点:1)该方法提出的三个指标 :<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于[[互信息]]的计算而没有考虑因果;2)该方法得到的仅仅是发生因果涌现的充分条件;3)该方法依赖宏观变量的选择,而不同的选择会对结果造成不同的显著影响;4)当系统具有大量冗余信息,或具有许多变量时,该方法的[[计算复杂度]]就会很高,同时由于<math>\Psi </math>为近似计算,因此这会让高维系统存在非常大的误差,而且还非常容易得到负值,从而无法判断是否有因果涌现发生。
    
为了验证猕猴运动有关的信息是其皮层活动的一个涌现特征,Rosas等做了如下实验:基于猕猴的皮质脑电图(ECoG)作为微观动力学的观测数据。为了得到宏观态变量<math>V</math>,作者们选择了用动作捕捉(MoCap)得到的猕猴肢体运动轨迹的时间序列数据,其中 ECoG 和 MoCap 分别由 64 个通道和 3 个通道的数据构成的。由于最原始的 MoCap 数据不满足随附特征的条件独立假设,因此,他们利用[[偏最小二乘]]和[[支持向量机]]算法,推断出与预测猕猴行为有关的编码在 ECoG 信号中的那部分神经活动,并推测该信息是潜在神经活动的涌现特征。最后,作者们基于微观状态和计算所得的宏观特征,验证了因果涌现的存在。
 
为了验证猕猴运动有关的信息是其皮层活动的一个涌现特征,Rosas等做了如下实验:基于猕猴的皮质脑电图(ECoG)作为微观动力学的观测数据。为了得到宏观态变量<math>V</math>,作者们选择了用动作捕捉(MoCap)得到的猕猴肢体运动轨迹的时间序列数据,其中 ECoG 和 MoCap 分别由 64 个通道和 3 个通道的数据构成的。由于最原始的 MoCap 数据不满足随附特征的条件独立假设,因此,他们利用[[偏最小二乘]]和[[支持向量机]]算法,推断出与预测猕猴行为有关的编码在 ECoG 信号中的那部分神经活动,并推测该信息是潜在神经活动的涌现特征。最后,作者们基于微观状态和计算所得的宏观特征,验证了因果涌现的存在。
642

个编辑

导航菜单