<math> Pr(s^→ |s_t^← ) </math>和<math> Pr(s^→ |s_{t^{'}}^← ) </math>为<math> s^→ </math>的条件概率分布,式中序列<math>t </math>和<math>t^{'} </math>通常是不同的,如果生成数据流<math>s </math>的过程是遍历的,上式可以理解为,如果<math>t∼t^{'} </math>,就算在不同时刻测量到了不同状态,智能体对未来状态的预测结果也会是相同的。 | <math> Pr(s^→ |s_t^← ) </math>和<math> Pr(s^→ |s_{t^{'}}^← ) </math>为<math> s^→ </math>的条件概率分布,式中序列<math>t </math>和<math>t^{'} </math>通常是不同的,如果生成数据流<math>s </math>的过程是遍历的,上式可以理解为,如果<math>t∼t^{'} </math>,就算在不同时刻测量到了不同状态,智能体对未来状态的预测结果也会是相同的。 |