为了捕捉<math> \overset{\leftarrow}{S}</math>中的有序结构,按照一定的划分方法( partitioni)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\tilde{\mathbf{S}}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列粗粒化后得到的宏观态。 | 为了捕捉<math> \overset{\leftarrow}{S}</math>中的有序结构,按照一定的划分方法( partitioni)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\tilde{\mathbf{S}}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列粗粒化后得到的宏观态。 |